
Tutorial 1: Lennard-Jones Liquid∗

ESPResSo Basics

October 10, 2016

Contents

1 Introduction 2

2 Background 2
2.1 The Lennard-Jones potential . 3

2.2 Units . 3

3 Python versions 3

4 First steps 4

∗For ESPResSo 3.4-dev-3195-gb4ff7de-dirty

1

5 Overview over a simulation script 5
5.1 System setup . 5

5.2 Choosing the thermodynamic ensemble, thermostat 6

5.3 Placing and accessing particles . 6

5.4 Setting up non-bonded interactions . 7

5.5 Warmup . 7

6 Putting it all together: Lennard-Jones liquid simulation 8
6.1 Initialization . 8

6.1.1 System setup . 9

6.2 Particles . 10

6.3 Removing the overlap between particles (warmup) 12

6.4 Integrating the equations of motion, taking measurements 12

6.5 Simple Error Estimation on Time Series Data 15

7 Exercise: Binary Lennard-Jones Liquid 17

8 Exercise: Measuring the particles’ mean square displacement 18

1 Introduction

Welcome to the basic ESPResSo tutorial!

In this tutorial, you will learn, how to use the ESPResSo package for your research.
We will cover the basics of ESPResSo, i.e., how to set up and modify a physical system,
how to run a simulation, and how to load, save and analyze the produced simulation
data.

More advanced features and algorithms available in the ESPResSo package are de-
scribed in additional tutorials.

2 Background

Today’s research on Soft Condensed Matter has brought the needs for having a flexi-
ble, extensible, reliable, and efficient (parallel) molecular simulation package. For this
reason ESPResSo (Extensible Simulation Package for Research on Soft matter) [1] has
been developed at Max Planck Institute for Polymer Research, Mainz, and Institute for
Computational Physics at the University of Stuttgart in the group of Prof. Dr. Christian
Holm[2, 3]. The Espresso package is probably the most flexible and extensible simulation

2

package in the market. It is specially developed for coarse-grained molecular dynamics
(MD) simulation of polyelectrolytes but not necessarily limited to this. It can be used
even in simulating granular media for example. ESPResSo has been nominated for the
Heinz-Billing-Preis for Scientific Computing in 2003 [4].

2.1 The Lennard-Jones potential

A pair of neutral atoms or molecules is subject to two distinct forces in the limit of
large separation and small separation: an attractive force at long ranges (van der Waals
force, or dispersion force) and a repulsive force at short ranges (the result of overlapping
electron orbitals, referred to as Pauli repulsion from Pauli exclusion principle). The
Lennard-Jones potential (also referred to as the L-J potential, 6-12 potential or, less
commonly, 12-6 potential) is a simple mathematical model that represents this behavior.
It was proposed in 1924 by John Lennard-Jones. The L-J potential is of the form
V (r) = 4ε[(σr)12 − (σr)6] where ε is the depth of the potential well and σ is the (finite)
distance at which the inter particle potential is zero and r is the distance between the
particles. The (1r)12 term describes repulsion and the (1r)6 term describes attraction.
The Lennard-Jones potential is an approximation. The form of the repulsion term
has no theoretical justification; the repulsion force should depend exponentially on the
distance, but the repulsion term of the L-J formula is more convenient due to the ease
and efficiency of computing r12 as the square of r6.

2.2 Units

Novice users must understand that Espresso has no fixed unit system. The unit system
is set by the user. Conventionally, reduced units are employed, in other words LJ units.
1

3 Python versions

Espresso can be used both, with python 2 and python 3. In these tutorials, we use
python 3 print syntax. If you are on python 2, issue the following command to activate
it:

1 from f u t u r e import p r i n t f u n c t i o n

1If we have charges there is additionally a concept of Bjerrum length, consult Espresso original paper
for more details.

3

4 First steps

What is ESPResSo? It is an extensible, efficient Molecular Dynamics package specially
powerful on simulating charged systems. In depth information about the package can
be found in the relevant sources[1, 4, 2, 3].

ESPResSo consists of two components. The simulation engine is written in C and
C++ for the sake of computational efficiency. The steering or control level is interfaced
to the kernel via an interpreter of the Python scripting languages.

The kernel performs all computationally demanding tasks. Before all, integration of
Newton’s equations of motion, including calculation of energies and forces. It also takes
care of internal organization of data, storing the data about particles, communication
between different processors or cells of the cell-system.

The scripting interface (Python) is used to setup the system (particles, boundary
conditions, interactions, . . .), control the simulation, run analysis, and store and load
results. The user has at hand the full reliability and functionality of the scripting lan-
guage. For instance, it is possible to use the SciPy package for analysis and PyPlot
for plotting. With a certain overhead in efficiency, it can also be used to reject/accept
new configurations in combined MD/MC schemes. In principle, any parameter which is
accessible from the scripting level can be changed at any moment of runtime. In this
way methods like thermodynamic integration become readily accessible.

Note: This tutorial assumes that you already have a working ESPResSo installation
on your system. If this is not the case, please consult the first chapters of the user’s
guide for installation instructions.

Using the pypresso script in the build directory, python simulation scripts can be run
conveniently:

./pypresso simulation.py

Task 1 You can check the features, that are compiled in the ESPResSo core by issu-
ing print(espressomd.features()) after having imported the espressomd Mod-
ule. Features can be switched on or off via the myconfig.hpp file. See the

chapter on installation in the user’s guide.

1 import espressomd

2 print(espressomd.features())

4

5 Overview over a simulation script

Typically, a simulation script consists of the following parts

• System setup (box geometry, thermodynamic ensemble, integrator parameters)

• Placing the particles

• Setup of interactions between particles

• Warm up (bringing the system into a state suitable for measurements)

• Integration loop (propagate the system in time and record measurements)

In the following sections, it will be shown, how these steps can be taken. Once the basics
are covered, we apply them to the simulation of the Lennard-Jones liquid. Note that
only the core elements of the Lennard-Jones simulation script will be covered in this
document. The full script can be found in scripts/lj_tutorial.py in the Lennard-
Jones tutorial directory.

5.1 System setup

The functionality of ESPResSo for python is provided via a python module called espressomd.
At the beginning of the simulation script, it has to be imported.

1 import espressomd

The next step would be to create an instance of the System class. This instance is
used as a handle to the simulation system. It can be used to manipulate the crucial
system parameters like the time step and the size of the simulation box (time step, and
box l). At any time, only one instance of the System class can exist.

1 system = espressomd.System()

2 system.time_step = time_step

3 system.box_l = [box_l_x , box_l_y , box_l_z]

5

5.2 Choosing the thermodynamic ensemble, thermostat

Simulations can be carried out in different thermodynamic ensembles such as NVE (par-
ticle Number, Velocity, Energy) or NVT (particle Number, Velocity, Temperature) as
well as NPT-isotropic (particle Number, Pressure, Temperature). The ensemble is main-
tained by a thermostat. In this tutorial we use the Langevin thermostat.

In ESPResSo, the thermostat is set as follows:

1 system.thermostat.set_langevin(kT=1.0, gamma =0.5)

Use a Langevin thermostat (NVT ensemble) with temperature set to 1.0 and damping
coefficient to 0.5. Alternatively, the thermostat can be turned off using

1 system.thermostat.turn_off ()

This results in an NVE ensemble.

5.3 Placing and accessing particles

Particles in the simulation can be accessed via the part-property of the System class.
Individual particles are referred to by an integer id, e.g., system.part[0]. It is also
possible to use common python iterators and slicing operations to access several particles
at once.

1 # access position of single particle

2 print system.part[0].pos

3

4 # Iterate over particles

5 for p in system.part:

6 print(p.pos)

7 print(p.v)

8

9 #Obtain all particle positions

10 cur_pos = system.part[:].pos

Particles can be grouped into several types, so that, e.g., a binary fluid can be simulated.
Particle types are identified by integer ids, which are set via the particles’ type attribute.
If it is not specified, zero is implied.

Particles are added to the simulation as follows

6

1 system.part.add(id=0, type=0, pos=[x,y,z])

Here, id and type can be omitted, in which case an unused particle id is assigned
automatically and type 0 is implied.

Many objects in ESPResSo have a string representation, and thus can be displayed via
python’s print method:

1 print(system.part[0])

5.4 Setting up non-bonded interactions

Non-bonded interactions act between all particles of a given combination of particle
types. In this tutorial, we use the Lennard-Jones non-bonded interaction. The interac-
tion of two particles of type 0 can be setup as follows:

1 lj1_eps = 1.0

2 lj1_sig = 1.0

3 lj1_cut = 1.12246

4 lj1_shift = 0.0

5 lj1_offset = 0.0

6 system.non_bonded_inter[0, 0].lennard_jones.set_params(epsilon=

lj_eps , sigma=lj_sig ,

7 cutoff=lj_cut , shift=lj_shift)

5.5 Warmup

In many cases, including this tutorial, particles are initially placed randomly in the
simulation box. It is therefore possible that particles overlap, resulting in a huge repulsive
force between them. In this case, integrating the equations of motion would not be
numerically stable. Hence, it is necessary to remove this overlap. This is done by
limiting the maximum force between two particles, integrating the equations of motion,
and increasing the force limit step by step. This is done as follows

1 # Obtain minimum distance between particles

2 act_min_dist = system.analysis.mindist ()

3 lj_cap =10

7

4 while i < warm_n_time and act_min_dist < lj_sigma *0.9 :

5 # Set the force cap

6 system.non_bonded_inter.set_force_cap(lj_cap)

7 lj_cap += 1.0

8 # Integrate the equation of motion

9 system.integrator.run(100)

10 # Obtain minimum distance between particles

11 act_min_dist = system.analysis.mindist ()

12

13 # Disable force cap

14 system.non_bonded_inter.set_force_cap (0)

In this code fragment, you can also see, how the analysis routines can be used to obtain
information about the simulation system, and how to integrate the equation of motion.

6 Putting it all together: Lennard-Jones liquid simulation

After we have briefly explained the use of ESPResSo, we now come to the Lennard-Jones
Liquid Simulation. Before we explain the script step by step, run the lj tutorial.py

with pypresso to get all generated files.

6.1 Initialization

First, we include necessary modules with import.

1 from __future__ import print_function

2 import espressomd

3 from espressomd import code_info

4

5 import os

6 import numpy as np

7

8 print("""

9 ===

10 = lj_tutorial.py =

11 ===

12

13 Program Information:""")

14 print(code_info.features())

8

6.1.1 System setup

At first, we must configure the environment and set the needed parameters. It is good practice
to define all simulation parameters as variables in a single location.

1 # System parameters

2 ###

3 n_part = 500

4 density = 0.8442

5

6 skin = 0.1

7 time_step = 0.01

8 eq_tstep = 0.001

9 temperature = 0.728

10

11 box_l = np.power(n_part/density , 1.0/3.0)

12

13 warm_steps = 100

14 warm_n_time = 2000

15 min_dist = 0.87

16

17 # integration

18 sampling_interval = 100

19 equilibration_interval = 1000

20

21 sampling_iterations = 100

22 equilibration_iterations= 5

23

24

25 # Interaction parameters (Lennard Jones)

26 ###

27

28 lj_eps = 1.0

29 lj_sig = 1.0

30 lj_cut = 2.5* lj_sig

31 lj_cap = 5

32

33

34 # System setup

35 ###

36 system = espressomd.System()

37

38 if not os.path.exists(’data’) :

9

39 os.mkdir(’data’)

40

41 system.time_step = time_step

42 system.cell_system.skin = skin

43

44 system.box_l = [box_l , box_l , box_l]

45

46 system.non_bonded_inter[0, 0].lennard_jones.set_params(

47 epsilon=lj_eps , sigma=lj_sig ,

48 cutoff=lj_cut , shift="auto")

49 system.non_bonded_inter.set_force_cap(lj_cap)

50

51 print("LJ-parameters:")

52 print(system.non_bonded_inter[0, 0].lennard_jones.get_params ())

53

54 # Thermostat

55 system.thermostat.set_langevin(kT=temperature , gamma =1.0)

6.2 Particles

The particles are initially placed randomly in the simulation box

1 # Particle setup

2 ###

3

4 volume = box_l * box_l * box_l

5

6 for i in range(n_part):

7 system.part.add(id=i, pos=np.random.random (3) * system.box_l

)

10

Task 2 Study the file lj tutorial.py. This system mimics the case study 4 of section 4,
in the book [5]. How can one define truncated-shifted potential in lj tutorial.py? (keep
in mind that Espresso has already a factor of 4 at shifted part with cut off rc = 2.5)

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]

U(r)tr-sh =

{
U(r)− U(rc) rc > r
0 rc < r

(To find the solution look at line 26. Look at picture 1 to see a plot of the potential)

0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 4,4

-0,8

0,8

1,6

2,4

U(r)-U(rc)

U(r)

U(r)

d/dx U(r)

Figure 1: Lennard-Jones Potential with ε = 1 and radius σ = 1. If you use a large cutoff
such as 2.5σ, the potential is practically zero at the cutoff. The red curve
indicates the Weeks-Chandler-Andersen potential, which is obtained from the
Lennard-Jones potential by cutting it off in its minimum at rc = 6

√
2 and

shifting it up.

11

6.3 Removing the overlap between particles (warmup)

This removes the overlap between the randomly placed particles, so the system can be integrated
in a stable fashion.

1 ###

2 # Warmup Integration #

3 ###

4

5 print("""

6 Start warmup integration:

7 At maximum {} times {} steps

8 Stop if minimal distance is larger than {}

9 """.strip().format(warm_n_time , warm_steps , min_dist))

10

11 i = 0

12 act_min_dist = system.analysis.mindist ()

13 while i < warm_n_time and act_min_dist < min_dist :

14 system.integrator.run(warm_steps)

15 act_min_dist = system.analysis.mindist ()

16 print("run {} at time = {} (LJ cap= {}) min dist = {}".

strip ().format(i, system.time , lj_cap , act_min_dist))

17 i+=1

18 lj_cap += 1.0

19 system.non_bonded_inter.set_force_cap(lj_cap)

20

21 system.non_bonded_inter.set_force_cap (0)

6.4 Integrating the equations of motion, taking measurements

At this point, we have set the necessary environment and warmed up our system. As a last step
before starting the actual simulation, we now open the files which we want to output data to
during the simulation. Then the simulation is started.

1 # Record energy versus time

2 en_fp = open(’data/energy.dat’, ’w’)

3

4 # Record radial distribution function

5 rdf_fp = open(’data/rdf.dat’, ’w’)

6

7 en_fp.write("#\n#\n#\n# Time\ttotal energy\tkinetic energy\

tlennard jones energy\ttemperature\n")

12

8

9

10

11 # Data arrays for simple error estimation

12 etotal = np.zeros((sampling_iterations ,))

13

14 # analyzing the radial distribution function

15 # setting the parameters for the rdf

16 r_bins = 50

17 r_min = 0.0

18 r_max = system.box_l[0]/2.0

19

20 avg_rdf=np.zeros((r_bins ,))

In the energy.dat file we print out the values for kinetic and potential energies,
temperature obtained with the analysis method system.analysis .energy(). See the code
in the snippet above, which contains the main sampling loop of the script.

kinetic temperature here refers to the measured temperature obtained from kinetic
energy and the number of degrees of freedom in the system. It should fluctuate around
the preset temperature of the thermostat.

Now, the equations of motion are integrated, and measurements are taken. The radial
distribution function is averaged over several measurements, to reduce noise.

1 for i in range(1, sampling_iterations + 1):

2 system.integrator.run(sampling_interval)

3 energies = system.analysis.energy ()

4

5 r, rdf = system.analysis.rdf(rdf_type="rdf", type_list_a

=[0], type_list_b =[0], r_min=r_min , r_max=r_max , r_bins=r_bins

)

6 avg_rdf += rdf/sampling_iterations

7

8 kinetic_temperature = energies[’ideal’]/(1.5 * n_part)

9

10 en_fp.write("%f\t%1.5e\t%1.5e\t%1.5e\t%1.5e\n" % (system.

time , energies[’total’], energies[’ideal’], energies[’total’]

- energies[’ideal’], kinetic_temperature))

Finally, the results are saved.

13

1 print("\nMain sampling done\n")

2

3 # calculate the variance of the total energy using scipys

statistic operations

4 error_total_energy=np.sqrt(etotal.var())/np.sqrt(

sampling_iterations)

5

6 en_fp.write("#mean_energy energy_error %1.5e %1.5e\n" % (etotal.

mean(), error_total_energy))

7

8 # write out the radial distribution data

9 for i in range(r_bins):

10 rdf_fp.write("%1.5e %1.5e\n" % (r[i], avg_rdf[i]))

11

12

13 en_fp.close ()

14 rdf_fp.close()

The radial distribution function, saved here, (rdf) describes the distribution of particles
around the center of a fixed particle, as a function of the particle-particle distance. This
of course assumes that the particle distribution is isotropic around the particles. From
the rdf, one can see whether the system is in a liquid or crystal state. For the Lennard-
Jones parameters used here, the system is in a liquid state, and particle interactions are
significant, as can be seen from the fact that correlations are still visible at a distance
of several diameters.

The rdf is computed on the fly in the current script, the data is then written to
data/rdf.dat.

Task 3 Plot the time evolution of energy and temperature, which are written into
the data directory in the file energy.dat. Make sure that the system is in equilib-
rium by checking that potential, and kinetic energy and calculated current tempera-
ture fluctuate around their mean values and do not show a drift.

14

Figure 2: The rdf.dat plot should be similar to this one

Task 4 Re-run the simulation with a density of 0.1 and a Lennard-Jones cutoff of
2

1
6σ. Compare the radial distribution function. Now, the correlations at longer dis-

tances are gone, as you are simulating a dilute system with purely repulsive particles.

6.5 Simple Error Estimation on Time Series Data

A simple way to estimate the error of an observable is to use the common standard
deviation (

√
σ) and the standard error of the mean (SE) for N uncorrelated samples:

σ = 〈x2 − 〈x〉2〉 (1)

SE =

√
σ

N
(2)

1 # Data arrays for simple error estimation

2 etotal = np.zeros ((sampling_iterations ,))

3 for i in range(1, sampling_iterations + 1):

15

4 energies = system.analysis.energy ()

5

6 etotal[i-1] = energies[’total’]

7

8 # calculate the variance of the total energy and total pressure

using scipys statistic operations

9 error_total_energy=np.sqrt(etotal.var())/np.sqrt(

sampling_iterations)

16

7 Exercise: Binary Lennard-Jones Liquid

A two-component Lennard Jones liquid can be simulated by placing particles of two
types (0 and 1) into the system. Depending on the Lennard-Jones parameters, the two
components either mix or separate.

Task 5

• Edit the lj tutorial.py file such that half of the particles are placed with
type=1. Type 0 is implied for the remaining particles

• Specify Lennard-Jones interactions for interactions of type 0 particles
with other type 0 particles, of type 1 particles with other type 1 par-
ticles, and of type 0 particles with type 1 particles (set parameters for
system.non bonded inter[i,j].lennard jones where i,j can be 0,0, 1,1,
and 0,1). Use the same Lennard-Jones parameters for interactions within a
component, but use a different lj cut mixed parameter for the cutoff in the
Lennard-Jones interaction between particles of type 0 and particles of type 1.
Set this parameter to 2

1
6σ to get de-mixing or to 2.5σ to get mixing between

the two components.

• Record the radial distribution functions separately for particles of type 0 around
particles of type 0, of type 1 around particles of type 1, and finally for par-
ticles of type 0 around particles of type 1. This can be done by changing
the type list arguments of the system.analysis.rdf() command. You can
record all three radial distribution functions in a single simulation. It is also
possible to write them as several columns into a single file.

• Plot the radial distribution functions for all three combinations of particle
types. The mixed case will differ significantly, depending on your choice of
lj cut mixed. Explain these differences.

If you need a hint, look at the two-component.py script in your
build directory under doc/tutorials/python/01-lennard jones/. Run
two-component-visualization.py to see a visualization.

17

8 Exercise: Measuring the particles’ mean square displacement

In this task, you will measure the particles’ mean square displacement,

msd(t) = 〈(x(t0 + t)− x(t0))
2〉, (3)

using a concept called “observables and correlators“. An observable is an object which
takes a measurement on the system. It can depend on parameters, such as the ids of the
particles to be considered, which are specified, when the observable is instanced.

1 from espressomd.observables import *

2 part_pos=ParticlePositions(ids=(0,1,2,3))

A correlator is an object which takes results from observables at different times during
the simulation, and using a correlation operation, calculates relationships between the
observables’ values at times t and t+ δt. This can be, e.g., a mean square displacement
(expectation value of the square distance a particle has travelled in a certain time) or a
velocity autocorrelation (expectation value of the product of the particles’ velocities at
different time intervals). A correlator for the mean square displacement is instanced as
follows

1 from espressomd.correlators import *

2

3 # The correlator works with the part_pos observable. Here , no

second

4 # observableis needed

5

6 # For short time spans , we record in linear time distances

7 # for larger time spans , we record in larger and larger steps.

8 # Use 10 linear measurements 10 time steps apart , each.

9

10 # The "square_distance_component_wise" correlation operation

tells

11 # the correlator how to calculate a result from the measurements

of the

12 # observables at different times

13

14 corr=Correlator(obs1=part_pos ,

15 tau_lin =10,dt=10*time_step ,

16 tau_max =10000*time_step ,

17 corr_operation="square_distance_componentwise")

18

Espresso holds a list of correlators to be automatically updated during integration. The
correlator is added to this list as follows

1 system.auto_update_correlators.add(corr)

Now the equations of motions can be integrated. This has to be done for a time signifi-
cantly longer than tau max, to obtain good results. Finally, the results can be obtained
as follows

1 # The 1st column contains the time , the 2nd column the number of

2 # measurements , and the remaining columns the mean square

displacement

3 # for each particle and each Cartesian component

4 corr.finalize ()

5 result=corr.result ()

Task 6 Record the mean square displacement versus time for a Lennard-Jones
liquid. Study its dependence on the density and on the friction parameter (γ) of the
Langevin thermostat.

• Setup up and equilibrate the Lennard Jones liquid as explained in this tutorial

• Setup an observable for the particle positions of all particles in the system

• Set up a Correlator which records the square distance of the particles for differ-
ent time intervals. Add it to the list of correlators to be updated automatically.

• Integrate the equations of motion

• Obtain the results from the correlator, average over all particles and all Carte-
sian coordinates (column three and above) and write the result to a file

• Plot the result

If you need a hint, look at msd.py in your build directory under
doc/tutorials/python/01 lennard-jones/.

19

References

[1] http://espressomd.org/.

[2] HJ Limbach, A. Arnold, and B. Mann. ESPResSo; an extensible simulation package
for research on soft matter systems. Computer Physics Communications, 174(9):704–
727, 2006.

[3] A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Röhm,
P. Košovan, and C. Holm. ESPResSo 3.1 — molecular dynamics software for coarse-
grained models. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods
for Partial Differential Equations VI, volume 89 of Lecture Notes in Computational
Science and Engineering, pages 1–23. Springer Berlin Heidelberg, 2013.

[4] A. Arnold, BA Mann, HJ Limbach, and C. Holm. ESPResSo–An Extensible Simula-
tion Package for Research on Soft Matter Systems. Forschung und wissenschaftliches
Rechnen, 63:43–59, 2003.

[5] Daan Frenkel and Berend Smit. Understanding Molecular Simulation. Academic
Press, San Diego, second edition, 2002.

20

	Introduction
	Background
	The Lennard-Jones potential
	Units

	Python versions
	First steps
	Overview over a simulation script
	System setup
	Choosing the thermodynamic ensemble, thermostat
	Placing and accessing particles
	Setting up non-bonded interactions
	Warmup

	Putting it all together: Lennard-Jones liquid simulation
	Initialization
	System setup

	Particles
	Removing the overlap between particles (warmup)
	Integrating the equations of motion, taking measurements
	Simple Error Estimation on Time Series Data

	Exercise: Binary Lennard-Jones Liquid
	Exercise: Measuring the particles' mean square displacement

