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Lipid Membrane
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* Forms barriers around cells and cellular organelles

* Formed by two layers of lipid molecules
* Forms due to the hydrophilic nature of lipid molecules
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Elasticity of Lipid Membranes

* We can model the membrane as an elastic sheet.
* The energy can be described as:

planes  _norma |
of principal
curvatures

E[S] = L dA {%K(K —Ky)? + RKG}

K: Bending modulus

K: Gaussian curvature modulus

K = ¢4 + c¢,: Total curvature

Ky: Intrinsic curvature

K; = c¢qc5: Gaussian curvature S N
en.widipedia.org/wiki/Curvature
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Review of other techniques
* Fluctuations
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Simulation Techniques to obtain k

* Fluctuation Methods
* Undulations
* Tilt

* Active Bending
* Cylindrical tethers
* Buckling
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Fluctuations

* Power spectrum of undulation modes'?:
kpT
L2q4<|hq|2>

* Power spectrum of tilt fluctuations?:

OK:

kpT

qz<‘ﬁqu‘2>

1Goetz R., Gompper G., Lipowsky R. (1999) Phys. Rev. Lett. 82: 221-224
2Lindahl E., Edholm O. (2000) Biophys. J. 79:426-433
3Watson M.C., Brandt E.G., Welch P.M., Brown F.L.H. (2012) Phys. Rev. Lett. 109: 028102
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Active Bending

* Enforce particular
shape and measure
the constraining force

* Early attempt: enforce
large undulation mode
using umbrella
sampling?

* Problem separating
effect of bending from
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effect of StretChing 10tter W.K. and Briels W.J. (2003) J. Chem.
Phys. 118, 4712
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Active Bending of Cylinder

* Hold a cylindrical
tether at a fixed

length.
FR

® K _— —
2T

 Fis the force needed to
hold the tether in a fixed
position.

* R isthe radius of the
tether.
* Useful for implicit
solvent models.

V.A. Harmandaris and M. Deserno, J. Chem. Phys.
125, 204905 (2006)
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Theory

* Shape equation

* Stress-strain relation

* Fluctuation corrections
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Buckled Membranes

* The energy of a buckled membrane can be parameterized as a

function of the arc length:
L

1 . ) Ly
Elp(s)] =Ly f ds {5 kYT S [COS‘/’ - rﬂ
0
f, is the lateral compressive stress along the membrane

* Functional variation

shows that Y(s)
satisfies:

Y +A%siny =0

K
2=
fx

M. Hu, P. Diggins, M. Deserno. J. H. Noguchi,. Phys. Rev. E.
Chem. Phys. 138, 214110 (2013) 83, 061919 (2011) CarnegieMg 0



Shape of a buckle

* The shape of the buckle can
be parameterized in terms
of the arc length.

Y (s) = 2 arcsin{y/m sn[s/A, m]}
x(s) =2 AE[lam[s/A,m],m] — s

z(s) =2Avm (1 — cn[s/A,m])

m = sin? <%>

E, sn, am, cn are elliptic integrals.  1; is the angle at the inflection point
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Imposing Constraints on the
Buckle

* There are still two unknowns in the equations of shape:

* m (the elliptic parameter) which is equivalent to the
inflection angle

* A (the characteristic length) which depends on the f..
* Two constraints must be enforced:

* Y(s) is periodic with period L

* when s has increased by L, x must increase by L,.
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Stress-strain relation

* We first express m as a function of strain:

1 11

m(y) =y —gr? —51/3 —ﬁ)ﬁ

* f, can be expressed as:

~ 2n2[1+1 NI ]
fe =\ 2V T3V T1ogY

* Since this is a fluid membrane, there is also a force in the
perpendicular direction:

— 1__y__y2_—y3...

A L, 2 32 128

2
£ = emlLy[ 5 23 39 ]
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Fluctuation Corrections

* Need to account for thermal membrane undulations.

* The correction in the direction of the buckle is
extremely small

_3kBT[ 5 27 , 295 ]

= 1+ — — 24— 3.
2L, | 8" Tea’ T102a”

Ofx

* The correction for the stress perpendicular to the
buckle is larger and also depends on a microscopic
cutoff length a

—kgTL[. 3Lya(/ 11 o
5F, = 1 1——y- _r
Iy LxLya[ 212 ( 8’ >] T
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* Simulation Setup
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Setting up Simulations

* Width of membrane strip should be small
* Saves computational effort
* Reduces the fluctuations in the y-direction

* Three processes need to be performed
* Obtain the length of a flat membrane under zero stress

* Create the buckled membrane
Many different techniques

e Calculate the stress from a buckled membrane at a
fixed stain
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* Results
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The Cooke Model

* Coarse-grained lipid

* 3 beads: reasonable
aspect ratio

* Generic bead-spring
* Only pair forces
* Solvent free

I.R. Cooke, K. Kremer, M Deserno, Phys. Rev. E 72, 011506 (2005)
|.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005)
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Cooke Model Results
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Ky = 12.8 £ 0.4 kgT
Kk, =12.9 + 0.8 kgT
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Other models

* Wang Model: DOPC * MARTINI: DMPC * Berger: DMPC
e 17 beads 10 beads * 46 beads
* Implicit Solvent  CG solvent e United Atom

* Explicit Solvent

Z.). Wang and M. Deserno, S.J. Marrink et. al. , J. Phys. O. Berger, O. Edholm and F.
New J. Phys. 12, 095004 Chem. B111, 7812 (2007) Jahnig, Biophys. J. 72, 2002
(2010) (1997)
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Results

- MARTINI: S
e K, = 29.0 + 1.0 kT o |
sy =277 + 1.9 kT

* Wang: . o

* Ky = 5.5+ 0.4 kgT :
%y, =3142.6kgT
* Berger: 120
* Ky = 2484 0.9 kgT Y
° Ky, =26+ 11 kT
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Energetics
* Temperature Dependence of Bending Rigidity
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Energetics of Bending

* For all models, the free
energy of bending is

lower than the total 00— | |
energy of bending. 0 s TLRERRTR e
* Entropy favors bending 23(:0 ‘:f% = Pl
¢ As a function of y, the “202 f R i >
two energies differby = R ; energy | |entropy

a multiplicative factor.

* The ratio between the
energies reveals the
temperature
dependence of the
bending modulus.
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Temperature Dependence of K

The temperature
dependence of k is:

(1) = k(1) (22)

The ratio of the
energy versus free
energy is:

R =543+0.12

R—

1

(log-scale)

k(T)/e

20

—_
(@3]

1

R X T’R—l

R =5.07+0.45 (fit)
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Conclusions

* Buckling membranes provides an efficient and
accurate method for obtaining bending rigidity.

* The method works for a wide range of lipid
models.

* It allows to obtain local temperature
dependence of bending rigidity.
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