Transferable Coarse-grained potential model for quantitative protein folding and design

Ivan Coluzza

De Novo Transferable Coarse-grained potential model for quantitative protein folding and design

Ivan Coluzza

Proteins

Made from ~20 different types of amino acids

http://xray.bmc.uu.se/~kurs/BiostrukfunkX2/practicals/practical_1/figs/peptide_bond.jpg

Proteins

- Made from ~20 different types of amino acids
- Natural sequences fold to thermodynamically stable structures

3mx7 and 600 more

Proteins

Made from ~20 different types of amino acids

Natural sequences fold to thermodynamically stable structures

Proteins

- Made from ~20 different types of amino acids
- Natural sequences fold to thermodynamically stable structures
- Constraints are key to understand proteins

Coluzza, I., & Dellago, C. (2012).. Journal of Physics: Condensed Matter, 24(28), 284111

Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2012). Soft Matter, DOI, 10.1039/2sm26967h.

Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2013). Physical Review Letters, 110(7), 075501.

Mean field theory Random Energy Model

Mean field theory Random Energy Model

Mean field theory of design

Mean field theory of design

Folding vs Design

Ê_N

Shakhnovich, E. and Gutin, A. **Protein Engin. 6, 793 (1993).** Coluzza, I. Muller, H. and Frenkel D. **Phys.Rev.E 68(4), 046703 (2003).**

Folding vs Design

Folding vs Design

Minimum Constraint Principle (MCP)

Minimum Constraint Principle (MCP)

Tube model

The phase space is defined by geometrical constraints

Hoang et al. Proc. Nat. Acc. Sci. (2004) vol. 101 pp. 7960-7964

Caterpillar model

\$₂

2.0 Å

Side chains Interactions

Self avoiding core

Chain rigidity

Hydrogen bonds

 C_{α}

Coluzza I., Plos ONE 10.1371/journal.pone.0020853 (2011)

Interaction Potentials

Side chains Interactions (R) Hydrogen bonds (R, θ_1, θ_2)

Miyazawa, S., & Jernigan, R. L, Macromolecules, 18(3), 534–552 (1985). Favrin et al. J Chem Phys 114 (18) pp. 8154-8158 (2001) Coluzza I., Plos ONE 10.1371/journal.pone.0020853 (2011)

Examples of caterpillar design - folding

Nuclear RNA export factor (10AI)

Lipoprotein (2K57) C-Terminal domain of the Ribosomal Protein (1CTF)

Protein G (1PGB)

Folding Free energy of designed proteins

Coluzza I., Plos ONE 10.1371/journal.pone.0020853 (2011)

Folding Free energy of designed proteins

Coluzza, I., & Frenkel, D. Chem.Phys.Chem., 6(9), 1779-83 (2005).

Coluzza I., Plos ONE 10.1371/journal.pone.0020853 (2011)

Virtual Move Parallel Tempering

Virtual Move Parallel Tempering

Frenkel, D. PNAS 101(51), 17571–5 (2004).

Coluzza, I., & Frenkel, D. Chem.Phys.Chem., 6(9), 1779–83 (2005).

Virtual Move Parallel Tempering

 T_3

 T_4

 T_1

Optimized potential over 120 proteins

Folding Free energy of designed proteins with optimized potential

Coluzza I., Submitted (2013)

Folding Free energy of designed proteins with optimized potential

Coluzza I., Submitted (2013)

Folding 14 natural proteins not in the set

Folding 14 natural proteins not in the set

Folding 14 natural proteins not in the

Folding 14 natural proteins not in the

...2 extreme cases

...2 extreme cases

Artificial Protein

Hydrogen Bonds

Ca

 C_{α}

Patchy-Particles

Hard Core

Patch

Bond

Coluzza, I., & Dellago, C. (2012) Journal of Physics: Condensed Matter, 24(28), 284111

•Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2012). Soft Matter, DOI, 10.1039/2sm26967h.

•Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2013). Physical Review Letters, 110(7), 075501.

Designed self-knotting patchy polymer

[•]Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2013). Physical Review Letters, 110(7), 075501.

Designed self-knotting patchy polymer

•Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2013). Physical Review Letters, 110(7), 075501.

Conclusions

A simple model of a protein can be designed and correctly folded

- The folding is dominated by the interplay between heterogeneous isotropic interactions and the directionality of hydrogen bonds
- The model predicts the correct native structures for a wide range of proteins
- Constraining the configurational space is a universal principle for design of self-folding systems

Nobel Prize in Chemistry 2013

Today the computer is just as important a tool for chemists as the test tube. Simulations are so realistic that they predict the outcome of traditional experiments

Acknowledgements

- Christoph Dellago
- Barbara Capone
- Peter van Oostrum
- Ronald Zirbs
- Erik Reimhult
- Mark Miller
- Daan Frenkel
- Angelo Cacciuto

∔_↓∔_↓∔ 📴 ∔_↓∔

Designed HP-Profile

Configurational Free energy

Folding the training set 132 targets

54 have not sampled the folded state yet.

Folding the training set 132 targets

54 have not sampled the folded state yet.

Interaction Potentials

Isotropic Interactions (R)

Patch -Patch Int.(R, θ_1, θ_2)

Coluzza, I., & Dellago, C. (2012).. Journal of Physics: Condensed Matter, 24(28), 284111

Experiments

Peter van Oostrum et al. BOKU, Vienna Austria

David Pine's group web page

Built-in locking mechanism

•Coluzza, I., Van Oostrum, P. D. J., Capone, B., Reimhult, E., & Dellago, C. (2013). Physical Review Letters, 110(7), 075501