A micro PLUMED2.0 tutorial for ESPREsSo users

Davide Branduardi

Thursday, October 10, 13

How to get the code and the documentationHow to start PLUMED 2.0 from ESPResSo

- * How to monitor CVs
- * How to bias CVs
- * How to perform and analyze Metadynamics

* How to get the code and the documentation* How to start PLUMED 2.0 from ESPResSo

- * How to monitor CVs
- * How to bias CVs
- * How to perform and analyze Metadynamics

Disclaimer 1: I am not an ESPResSo user!

* How to get the code and the documentation* How to start PLUMED 2.0 from ESPResSo

- * How to monitor CVs
- * How to bias CVs
- * How to perform and analyze Metadynamics

Disclaimer 1: I am not an ESPResSo user!

Disclaimer 2: all that you will see is in a document which you can download from the web! (do not write, just follow)

How to get the code and the documentationHow to start PLUMED 2.0 from ESPResSo

- * How to monitor CVs
- * How to bias CVs
- * How to perform and analyze Metadynamics

Disclaimer 1: I am not an ESPResSo user!

Disclaimer 2: all that you will see is in a document which you can download from the web! (do not write, just follow)

I assume: linux shell+ ESPResSo input + gnuplot + vmd

Where you get the code

* Setup the environment (bash)
source
/home/davide/software/espresso/SETUP_FULL_ENVIRONMENT.sh
* Test it

plumed help

* The executable we will use is accessible on the workstations (copy it or link it):

/home/davide/software/espresso/Espresso

- * Copy the exercises in your own directory for this tutorial
- cp -r /home/davide/software/espresso/plumed_tests .

For the brave: get it and build it (not now)

Get plumed: https://github.com/plumed/plumed2

Get libmatheval (opt): http://www.gnu.org/ software/libmatheval/

Get ESPResSo (my own fork) along with this tutorial at: http://davidebr.github.io/espresso/

The system: tutorial.tcl

* Open the tutorial.tcl

* You find the following

setmd plumedison 1 <- activate plumed setmd plumedfile plumed.dat <- set the input (external file) set plumed_input [open "plumed.dat" "w"] <- the input puts \$plumed_input "d1: DISTANCE ATOMS=1,40" puts \$plumed_input "PRINT ARG=* STRIDE=50 FILE=COLVAR" close \$plumed_input

* Then in the loop plumed check what to do at every step

* Try it

* Open the tutorial.tcl

* You find the following

plumed.dat

d1: DISTANCE ATOMS=1,40
PRINT ARG=* STRIDE=50 FILE=COLVAR

* Then in the loop plumed check what to do at every step

* Try it

* Open the tutorial.tcl

* You find the following

plumed.dat

action d1: DISTANCE ATOMS=1,40 action PRINT ARG=* STRIDE=50 FILE=COLVAR

* Then in the loop plumed check what to do at every step

* Try it

* Open the tutorial.tcl

* You find the following

plumed.dat

action <u>d1</u>: DISTANCE ATOMS=1,40 action PRINT ARG=* STRIDE=50 FILE=COLVAR

* Then in the loop plumed check what to do at every step

* Try it

* Open the tutorial.tcl

* You find the following

plumed.dat

action d1: (DISTANCE) ATOMS=1,40 action PRINT ARG=* STRIDE=50 FILE=COLVAR

* Then in the loop plumed check what to do at every step

* Try it

* Open the tutorial.tcl

* You find the following

plumed.dat action d1: DISTANCE ATOMS=1,40 action PRINT ARG=* STRIDE=50 FILE=COLVAR

* Then in the loop plumed check what to do at every step

* Try it

* Open the tutorial.tcl

* You find the following

plumed.dat

action d1: DISTANCE ATOMS=1,40 action (PRINT) ARG=* STRIDE=50 FILE=COLVAR

* Then in the loop plumed check what to do at every step

* Try it

* Open the tutorial.tcl

* You find the following

plumed.dat

action d1: DISTANCE ATOMS=1,40 action PRINT ARG=* STRIDE=50 FILE=COLVAR

* Then in the loop plumed check what to do at every step

* Try it

* Open the tutorial.tcl

* You find the following

plumed.dat action d1: DISTANCE ATOMS=1,40 PRINT ARG=* STRIDE=50 FILE=COLVAR

* Then in the loop plumed check what to do at every step

* Try it

* What do you get? A banner on stdout and a COLVAR file

PLUMED: PLUMED compiled on Sep 3 2013 at 02:35:56 PLUMED: There is not yet a published paper describing this software. PLUMED: If you use it in a publication please explicitly state PLUMED: which version you are using and cite the previous paper [1] PLUMED: For further information see the PLUMED web page at www.plumed-code.org PLUMED: Molecular dynamics engine: espresso PLUMED: Precision of reals: 8 some features are parallel PLUMED: Running over 1 node -PLUMED: Number of atoms: 80 PLUMED: File suffix: PLUMED: FILE: plumed.dat the DISTANCE action PLUMED: Action DISTANCE PLUMED: with label d1 PLUMED: between atoms 1 40 you declared using periodic boundary conditions PLUMED: PLUMED: Action PRINT the PRINT action PLUMED: with label @1 PLUMED: with stride 50 PLUMED: with arguments d1 you declared PLUMED: on file COLVAR PLUMED: with format %f PLUMED: END FILE: plumed.dat PLUMED: Timestep: 0.010000

* What do you get? A banner on stdout and a COLVAR file

COLVAR file:

#! FIELDS	time d1 ←
0.500000	2.374363
1.000000	2.551184
1.500000	2.392192
2.000000	2.292906
2.500000	2.789281
3.000000	2.782809
3.500000	3.443960
4.000000	4.355173
4.500000	5.197304
5.000000	5.761397
5.500000	6.199342
6.000000	6.726716

____ Header: tells what the file contains (here time and distance)

2_basic_on_off :reset plumed

* Open the tutorial.tcl

```
set i 0
while { $i<$n_cycle } {
set plumed_input [open "plumed.dat" "w"]
puts $plumed_input "d1: DISTANCE ATOMS=1,40"
puts $plumed_input "PRINT ARG=* STRIDE=10 FILE=COLVAR_$i"
close $plumed_input
setmd plumedreset 1
integrate $n_steps
if { $vmd == "yes" } { imd positions }
writevcf $f
incr i</pre>
```

2_basic_on_off :reset plumed

* Open the tutorial.tcl

```
set i 0
while { $i<$n_cycle } {</pre>
```

```
set plumed_input [open "plumed.dat" "w"]
puts $plumed_input "d1: DISTANCE ATOMS=1,40"
puts $plumed_input "PRINT ARG=* STRIDE=10 FILE=COLVAR_$i"
close $plumed_input
```

```
setmd plumedreset 1
integrate $n_steps
if { $vmd == "yes" } { imd positions }
writevcf $f
incr i
```

A new COLVAR at every round!

2_basic_on_off :reset plumed

* Open the tutorial.tcl

d1: DISTANCE ATOMS=1,40 # this hash is a comment # a moving restraint using d1 give a recipe on how MOVINGRESTRAINT ... ARG=d1to steer the endpoints STEP0=0 AT0=2.0 KAPPA0=5.0 $H'(\mathbf{x},t) = H(\mathbf{x}) + \frac{k}{2} (\mathbf{s}(\mathbf{x}) - x_0 - vt)^2$ STEP1=20000 AT1=40.0 KAPPA1=5.0 STEP2=40000 AT2=2.0 KAPPA2=5.0 v = (AT1 - AT0)/(STEP1-STEP0)... MOVINGRESTRAINT PRINT ARG=* STRIDE=50 FILE=COLVAR PRINT ARG=@1.d1_cntr,@1.d1_work STRIDE=50 FILE=WORK

has. How to know which are available? Read the output!

PLUMED:	Action MOVINGRESTRAINT	
PLUMED:	with label @1	
PLUMED:	with stride 1	
PLUMED:	with arguments d1	
PLUMED:	step0 0	
PLUMED:	at 2.000000	
PLUMED:	with force constant 5.000000	
PLUMED:	step1 20000	
PLUMED:	at 40.000000	
PLUMED:	with force constant 5.000000	
PLUMED:	step2 40000	
PLUMED:	at 2.000000	
PLUMED:	with force constant 5.000000	
PLUMED:	added component to this action:	@1.bias
PLUMED:	added component to this action:	@1.force2
PLUMED:	added component to this action:	@1.d1_cntr
PLUMED:	added component to this action:	@1.d1_work

PLUMED:	Action MOVINGRESTRAINT	
PLUMED:	with label @1	
PLUMED:	with stride 1	
PLUMED:	with arguments d1	
PLUMED:	step0 0	
PLUMED:	at 2.000000	
PLUMED:	with force constant 5.000000	
PLUMED:	step1 20000	
PLUMED:	at 40.000000	
PLUMED:	with force constant 5.000000	
PLUMED:	step2 40000	
PLUMED:	at 2.000000	
PLUMED:	with force constant 5.000000	
PLUMED:	added component to this action:	@1.bias
PLUMED:	added component to this action:	@1.force2
PLUMED:	added component to this action:	@1.d1_cntr
PLUMED:	added component to this action:	@1.d1_work

* You can steer (or impose forces) along any of the provided collective variables. For example, you might want to see how particles collapse around the chain

d1: DISTANCE ATOMS=1,40 # a coordination number of the other particles c1: COORDINATION GROUPA=1-40 GROUPB=41-80 R_0=3.0 NN=14 MM=16 # a moving restraint using d1: note that the kappa is kept if not specified MOVINGRESTRAINT ... ARG=d1STEP0=0 AT0=2.0 KAPPA0=5.0 STEP1=20000 AT1=40.0 ... MOVINGRESTRAINT # another moving restraint after the steer MOVINGRESTRAINT ... ARG=c1 LABEL=sc1 STEP0=20000 AT0=0.0 KAPPA0=0.0 STEP1=40000 AT1=1200.0 KAPPA1=0.1 ... MOVINGRESTRAINT PRINT ARG=* STRIDE=50 FILE=COLVAR PRINT ARG=c1.sc1.* STRIDE=50 FILE=COLVAR COOR

d1: DISTANCE ATOMS=1,40 # a coordination number of the other narticles c1: COORDINATION GROUPA=1-40 GROUPB=41-80 R_0=3.0 NN=14 MM=16 # a moving restraint using d1: note that the kappa is kept if not specified MOVINGRESTRAINT ... ARG=d1STEP0=0 AT0 = 2.0KAPPA0=5.0STEP1=20000 AT1=40.0 ... MOVINGRESTRAINT # another moving restraint after the steer MOVINGRESTRAINT ... ARG=c1 LABEL=sc1 STEP0=20000 AT0=0.0 KAPPA0=0.0 STEP1=40000 AT1=1200.0 KAPPA1=0.1 ... MOVINGRESTRAINT PRINT ARG=* STRIDE=50 FILE=COLVAR PRINT ARG=c1.sc1.* STRIDE=50 FILE=COLVAR COOR

define the coordination of the chain (atoms 1-40) with the particles (atoms 41-80)

d1: DISTANCE ATOMS=1,40 # a coordination number of the other narticles c1: COORDINATION GROUPA=1-40 GROUPB=41-80 R_0=3.0 NN=14 MM=16 # a moving restraint using d1: note that the kappa is kept if not specified MOVINGRESTRAINT ... ARG=d1STEP0=0 AT0 = 2.0KAPPA0=5.0STEP1=20000 AT1=40.0 .. MOVINGRESTRAINT # another moving restraint after the steer You can bias two CV MOVINGRESTRAINT ... ARG=c1 LABEL=sc1 STEP0=20000 AT0=0.0 KAPPA0=0.0 at the same time STEP1=40000 AT1=1200.0 KAPPA1=0.1 .. MOVINGRESTRAINT PRINT ARG=* STRIDE=50 FILE=COLVAR

PRINT ARG=c1.sc1.* STRIDE=50 FILE=COLVAR COOR

define the coordination of the chain (atoms 1-40) with the particles (atoms 41-80)

<pre>d1: DISTANCE ATOMS=1,40 # a coordination number of the other particles c1: COORDINATION GROUPA=1-40 GROUPB=41-80 R_0=3 # a moving restraint using d1: note that the ka MOVINGRESTRAINT ARG=d1 STEP0=0 AT0=2.0 KAPPA0=5.0 STEP1=20000 AT1=40.0 MOVINGRESTRAINT</pre>	0.0 NN=14 MM=16 Appa is kept if not specified	define the coordination of the chain (atoms 1-40) with the particles (atoms 41-80)
<pre># another moving restraint after the steer MOVINGRESTRAINT ARG=c1 LABEL=sc1 STEP0=20000 AT0=0.0 KAPPA0=0.0 STEP1=40000 AT1=1200.0 KAPPA1=0.1 MOVINGRESTRAINT PRINT ARG=* STRIDE=50 FILE=COLVAR PRINT ARG=c1.sc1 * STPIDE=50 ETLE=COLVAR COOP</pre>	You can bias the same	two CV time
compact t=0	extended t=20000	clustered t=40000
		e e e e e e e e e e e e e e e e e e e

$$V(\boldsymbol{s},t) = \int_0^t dt' \omega \exp\left(-\sum_{i=1}^d \frac{(s_i(\mathbf{x}) - S_i(\mathbf{x}(t'))^2}{2\sigma_i^2}\right)$$

$$V(\boldsymbol{s},t) = \int_0^t dt' \omega \exp\left(-\sum_{i=1}^d \frac{(s_i(\mathbf{x}) - S_i(\mathbf{x}(t'))^2}{2\sigma_i^2}\right)$$

$$V(s,t) = \int_0^t dt \, \omega \exp\left(-\sum_{i=1}^d \frac{(s_i(\mathbf{x}) - S_i(\mathbf{x}(t'))^2}{2\sigma_i^2}\right)$$

how often place the
new Gaussian

$$V(s,t) = \int_0^t dt' \omega \exp\left(-\sum_{i=1}^d \frac{(s_i(\mathbf{x}) - S_i(\mathbf{x}(t'))^2}{2\sigma_i^2}\right)$$

how high in energy is
the Gaussian

$$V(s,t) = \int_0^t dt' \omega \exp\left(-\sum_{i=1}^d \frac{(s_i(\mathbf{x}) - S_i(\mathbf{x}(t'))^2}{2\sigma_i^2}\right)$$

how wide is the
Gaussian in CV units

* A movie on metadynamics: place computational sand to remove metastabilities

$$V(s,t) = \int_0^t dt' \omega \exp\left(-\sum_{i=1}^d \frac{(s_i(\mathbf{x}) - S_i(\mathbf{x}(t'))^2}{2\sigma_i^2}\right)$$

how wide is the
Gaussian in CV units

plumed.dat

d1: DISTANCE ATOMS=1,40 meta: METAD ARG=d1 SIGMA=4.0 HEIGHT=0.3 PACE=100 PRINT ARG=* STRIDE=50 FILE=COLVAR

* You get a HILLS file (similar to COLVAR in some ways)

#!	FIE	_DS time	d1	sigma.	_d1 h	eight biasf 🛴
#!	SET	multiva	riat	e fal	se	Hoodor: you boyo
	4	4.355	1	0.3	1	neauer. you have
	8	7.579	1	0.3	1	position, sigma, height,
	12	8.020	1	0.3	1	hiasfactor* and
	16	5.873	1	0.3	1	
	20	9.100	1	0.3	1	multivariate** format
	24	9.672	1	0.3	1	specifier
	28	7.669	1	0.3	1	
	32	5.39	1	0.3	1	
	36	6.638	1	0.3	1	
	40	7.314	1	0.3	1	*\//oll_Tempered metad
	44	10.4	1	0.3	1	
	48	13.33	1	0.3	1	** Adaptive Gaussians
	52	14.03	1	0.3	1	
	56	14.70	1	0.3	1	

* To go from the HILLS file to the free-energy estimate you have to run plumed as standalone

plumed sum_hills --stride 300 --hills HILLS

* To go from the HILLS file to the free-energy estimate you have to run plumed as standalone

plumed sum_hills --stride 300 --hills HILLS

* It produces fes_0.dat fes_1.dat ... files. Let's visualize them

gnuplot> plot "fes_0.dat" w l, "fes_1.dat" w l, "fes_2.dat" w l
gnuplot> repl "fes_3.dat" w l, "fes_4.dat" w l

* To go from the HILLS file to the free-energy estimate you have to run plumed as standalone

plumed sum_hills --stride 300 --hills HILLS

* It produces fes_0.dat fes_1.dat ... files. Let's visualize them

gnuplot> plot "fes_0.dat" w l, "fes_1.dat" w l, "fes_2.dat" w l
gnuplot> repl "fes_3.dat" w l, "fes_4.dat" w l

Wait! The free energy does not converge!

* To go from the HILLS file to the free-energy estimate you have to run plumed as standalone

plumed sum_hills --stride 300 --hills HILLS

* It produces fes_0.dat fes_1.dat ... files. Let's visualize them

gnuplot> plot "fes_0.dat" w l, "fes_1.dat" w l, "fes_2.dat" w l
gnuplot> repl "fes_3.dat" w l, "fes_4.dat" w l

Wait! The free energy does not converge!

Remember: only relative differences matter!

Thursday, October 10, 13

* Anyway this free energy is bad....no clear stable state, no convergence. How to improve?

* Anyway this free energy is bad....no clear stable state, no convergence. How to improve?

Parameters choice
 Collective variable choice

* Anyway this free energy is bad....no clear stable state, no convergence. How to improve?

1) Parameters choice

2) Collective variable choice

* Anyway this free energy is bad....no clear stable state, no convergence. How to improve?

* Anyway this free energy is bad....no clear stable state, no convergence. How to improve?

* Anyway this free energy is bad....no clear stable state, no convergence. How to improve?

* Anyway this free energy is bad....no clear stable state, no convergence. How to improve?

* Anyway this free energy is bad....no clear stable state, no convergence. How to improve?

d1: DISTANCE ATOMS=1,40 meta: METAD ARG=d1 SIGMA=1.0 HEIGHT=0.3 PACE=400 PRINT ARG=* STRIDE=50 FILE=COLVAR

and increase the simulated timestep in the ESPResSo script!!

d1: DISTANCE ATOMS=1,40 meta: METAD ARG=d1 SIGMA=1.0 HEIGHT=0.3 PACE=400 PRINT ARG=* STRIDE=50 FILE=COLVAR

and increase the simulated timestep in the ESPResSo script!!

d1: DISTANCE ATOMS=1,40 meta: METAD ARG=d1 SIGMA=1.0 HEIGHT=0.3 PACE=400 PRINT ARG=* STRIDE=50 FILE=COLVAR

and increase the simulated timestep in the ESPResSo script!!

d1: DISTANCE ATOMS=1,40 meta: METAD ARG=d1 SIGMA=1.0 HEIGHT=0.3 PACE=400 PRINT ARG=* STRIDE=50 FILE=COLVAR

and increase the simulated timestep in the ESPResSo script!!

Much better: grows parallel in a domain. Other errors are mainly due to the CV!

Where do I go from here?

- * Explore the CVs!!!! They are many! And can be combined to do your own CV in a sort of script!
- * Try different methods. There is no "best method"! It depends on your system!
- * Plumed is also an analysis tool
- * Plumed can be a platform to invent your method and CVs
- * Explore the documentation of PLUMED!!! (also developer doc)

the user manual - if you want to modify PLUMED or to understand how it works internally, have a look at the developer manual . Alternatively, to look at a list of the new features available in plumed 2.0 and to work out how to install plumed 2.0 in your MD code check out: