
Tutorial:

Rare Event Sampling with FRESHS and FFS

using the example of

polymer translocation through a nanopore

simulated with ESPResSo

Kai Kratzer, Joshua T. Berryman and Axel Arnold

October 9, 2013

Contents

1 Introduction and background 2
1.1 Forward Flux Sampling (FFS) 2
1.2 Polymer translocation through a nanopore 3

1.2.1 Reaction coordinate . 4
1.2.2 Initial state A . 4
1.2.3 Final state B . 4
1.2.4 Simulation scenario . 4

2 Requirements 5

3 Preparing the environment 5
3.1 ESPResSo . 6
3.2 Getting FRESHS and the tutorial files 6
3.3 Preparing the configuration files 6

3.3.1 Server . 6
3.3.2 Client . 7

3.4 Preparing the harness script . 8

4 Launching FRESHS 8

5 Analysis tools 9
5.1 Database view . 9
5.2 Analysis scripts . 9

5.2.1 Backtracking successful runs 9
5.2.2 Interface statistics . 10
5.2.3 Analyzing custom data 10

6 FAQ and troubleshooting 11

1

Rare Event Sampling with FRESHS and ESPResSo

1 Introduction and background

In this tutorial, we present the software package FRESHS [1] for parallel sim-
ulation of rare events using sampling techniques from the ‘splitting’ family of
methods which are suited to simulate equilibrium and non-equilibrium systems.
FRESHS provides a plugin system for software implementing the underlying
physics of the system of interest. At present, example plugins exist for our frame-
work to steer the popular MD packages GROMACS, LAMMPS and ESPResSo,
but due to the simple interface of our plugin system, it is also easy to attach
other simulation software or self-written code. Use of our framework does not
require recompilation of the simulation program.

System states are managed using standard database technology1 so as to al-
low checkpointing, scaling and flexible analysis. The communication within the
framework uses standard TCP/IP networking and is therefore suited to high-
performance parallel hardware as well as to distributed or even heterogeneous
networks of inexpensive machines. For FFS we implemented an automatic in-
terface placement [2] that ensures optimal, nearly constant flux through the
interfaces. We introduce ‘ghost’ (or ‘look-ahead’) runs that remedy the bottle-
neck which occurs when progressing to the next interface.

FRESHS is open-source, providing a publicly available parallelized rare-
event sampling system.

We focus now on the FFS simulation technique, which we use here to simulate
the polymer translocation through a nanopore.

1.1 Forward Flux Sampling (FFS)

FFS is designed to sample the transition rate kAB and transition trajectories
from an initial state A to a final state B. The transition rate is split into
two contributions kAB = ΦPB , where Φ is the so-called escape flux, the flux of
trajectories leaving the initial state A, and PB is the probability that a trajectory
that manages to leave the initial state A arrives at the final state B, instead of
returning to A.

The initial and final states are defined in terms of an order parameter λ. If
λ <= λA, the system is in the initial state, if λA < λ < λB , it is in the “barrier”
region, and if λ > λB , the system is in the final state.

Usually, A is defined such that its boundary is still relatively frequently
visited, so that Φ can be determined from a conventional brute-force simulation.
PB however is usually very small and therefore cannot be sampled directly.
Therefore, the “barrier” region is partitioned by a set of n interfaces λi, where
λi < λi+1 and λ0 ≡ λA and λn ≡ λB (fig. 1). The probability PB is then given
by

PB =

n−1∏
i=0

pi (1)

where pi is the probability to reach interface i+1 coming from interface i, before
returning back to A. The advantage of this splitting is that the probabilities pi
are much higher than PB itself, and therefore easier to sample. By tracking back
the transition paths from interface to interface, FFS also generates transition
trajectories, which can be used for investigations of the transition process.

1Here, we use sqlite3 databases.

2

Rare Event Sampling with FRESHS and ESPResSo

Figure 1: Schematic illustration of the FFS algorithm. The “barrier” region
between the initial state A and the final state B is partitioned by a set of
interfaces. The initial MD run in A is used to determine the escape flux Φ, the
other lines depict the successful and the unsuccessful runs which are used to
determine PB . The dots represent configurations on the particular interface.

An implementation of the DFFS algorithm consists of two stages. First, the
flux Φ across the first interface λ0 is computed by setting up the system in the
initial state and monitoring the frequency of trajectory crossings on λ0. On
occurence of such a crossing, the configuration of the system is stored if the
crossing happened in the direction of increasing λ. This generates N0 configu-
rations corresponding to states of the system at λ0. If the system reaches the
final state during this run, it is reset to the initial state and re-equilibrated.

In the second stage of the DFFS algorithm, the partial probabilities pi are
computed step-by-step (fig. 1). To compute p1, one chooses configurations at
random from the configurations stored at the first interface λ0 and uses them
to fire new ”trial” trajectories. These new trajectories are continued until they
reach either the next interface λ1 or return to the previous interface λ0. Again,
the successful configurations at λ1 are stored in a new set. After M0 trial runs
have been fired, p1 is computed by dividing the number of successful runs by M0.
This procedure is repeated using the configurations at λ1 as starting points for
M1 trial runs that are continued until they reach the next interface λ2 or return
to λ0, and so on, until the final interface at λB is reached. This procedure results
in a complete set of estimated partial probabilities pi. Transition trajectories
from the initial state A to the final state B can then be reconstructed from
the collection of successful trajectories between the two states. For further
information, refer to [3, 4, 5, 6, 7].

1.2 Polymer translocation through a nanopore

In this tutorial, we will use the software package ESPResSo [8] together with
the Forward Flux Sampling method using ghost runs and automatic, optimized

3

Rare Event Sampling with FRESHS and ESPResSo

Figure 2: Polymer in a nanopore, set up and simulated using ESPResSo and
visualized with VMD.

interface placement [2] to push a polymer through a nanopore (see also fig. 2).

1.2.1 Reaction coordinate

As reaction coordinate, we use the z coordinate in direction of the pore of the
center of mass of the polymer chain,

λ =
1

N

N−1∑
i=0

zi, (2)

where N is the number of monomers in the polymer chain. Note, that this is
probably not the best reaction coordinate, but an easy one which increases in
direction to the final state B. As an advanced task you could think about other
reaction coordinates and try to implement them.

1.2.2 Initial state A

For the setup in the initial state A, we set up a polymer with the first bead
located at the entry of the pore. The rest of the polymer is set at random, using
the capabilities of ESPResSo to set up random polymers. Then, we check the
reaction coordinate. If it is in our basin of state A, we begin the initial MD run
in A, if not, we delete the polymer and set a new one.

1.2.3 Final state B

The final state is located at a position λB , where most of the polymer has
translocated through the pore. This is the case, when the reaction coordinate
is larger than the z-coordinate of the center of the pore. To make sure, that we
are really through, we set the border of state B a little bit behind.

1.2.4 Simulation scenario

For this simulation, we use a box with dimensions 30 × 30 × 60 and periodic
boundary conditions. The pore’s center is in the middle of the box, with a

4

Rare Event Sampling with FRESHS and ESPResSo

length of l = 10.0 in z-direction. The diameter of the pore can be specific in
the configuration file (see sec. 3.3), this is advantageous to investigate the effect
of different radii of the pore. We recommend to start with a larger radius at
the beginning, e.g. r = 5. The entry of the pore is located at λ = 25 and the
center of the pore is at λ = 30. This means, the polymer is through the pore,
when the reaction coordinate is larger than λ = 30. For the border of the initial
domain A we choose λA = 17, which should be at the beginning of the increase
of the free energy curve towards the entry of the pore.

The number of steps of an initial MD run is limited. However, if the polymer
diffuses too much away from the pore, we have to interrupt the simulation before
the center of mass is at the other side of the simulation box because of the
periodic boundary conditions. Therefore, we initialize our system again in A, if
the center of mass is lower than e.g. λ = 5.

The length of the polymer can also be tuned in the configuration file. We
start with a shorter polymer, e.g. N = 64. The polymer uses FENE interactions
for the bonds. The other interactions (e.g. polymer-pore) are set to Weeks-
Chandler-Andersen interactions.

Now, we proceed with the software requirements and the setup of the envi-
ronment.

2 Requirements

To follow this tutorial you will need:

1. A POSIX-compatible operating system (e.g. Linux, Mac OS X)

2. GIT2: Version control system to checkout the latest code

3. FRESHS3: The Flexible Rare Event Sampling Harness System

4. ESPResSo4: MD simulation tool which we will couple to FRESHS

5. Python with sqlite support and numpy to execute the code and analysis
tools

6. Gnuplot5: Plotting tool for visualizations

7. SQL viewer (optional), e.g. SQLite Manager addon for firefox6 or sqlite-
browser7

8. VMD8 (optional)

3 Preparing the environment

In this section we will get the required tools and prepare the directory structure,
configuration files and simulation tools.

2http://git-scm.com/
3http://www.freshs.org
4http://espressomd.org
5http://www.gnuplot.info/
6https://code.google.com/p/sqlite-manager/
7http://sqlitebrowser.sourceforge.net/
8http://www.ks.uiuc.edu/Research/vmd/

5

Rare Event Sampling with FRESHS and ESPResSo

3.1 ESPResSo

Checkout the latest ESPResSo code (alternatively, you can use your already
existing code snapshot):

git clone git://github.com/espressomd/espresso.git

Make sure that you have the following enabled in your myconfig.h:

#define CONSTRAINTS
#define LENNARD_JONES

Compile ESPResSo with these settings and note down the absolut path, where
your ‘Espresso’ executable is located. You will need that information later in
the client’s configuration file.

3.2 Getting FRESHS and the tutorial files

The recommended way is to checkout the latest FRESHS development code
from github:

git clone https://github.com/freshs/freshs.git

Alternatively, you can also download the .tar.bz2-package from the webpage,
but the development code should have the latest updates included.

After checking out the code from github, several subdirectories should be
located in the freshs-directory, here is an overview:

• client: The code of the client which connects to the server and launches
the harness scripts and the simulation tool.

• doc: Documentation of the framework.

• harnesses: Example harness scripts.

• scripts: Analysis scripts to analyze data during and after the simulation.
These scripts can also serve as templates for own analysis scripts.

• server: The code of the server which implements all methods and dis-
tributes jobs to the simulation clients.

• test: Directory containing some test codes. Not used in this tutorial.

• tutorial: The tutorial files.

3.3 Preparing the configuration files

3.3.1 Server

Navigate to the ‘server’ folder of the ‘freshs’ directory. Copy the ffs example
configuration file to a new configuration file for our simulation:

cp server-sample-ffs.conf server-espresso-ffs_tutorial.conf

Open the file with an editor of your choice and change the following sections:

6

Rare Event Sampling with FRESHS and ESPResSo

[general]
Change this to something individual (do not use 42, 1337, ...),
should be above 1000 and less than 65535
listenport =
...
turn on ghosts
use_ghosts = 1
...
adapt user_msg for easy configuration of the data directory,
pore diameter and polymer length.
Think about a directory, where the snapshots can be stored
user_msg = "servername": "polytranslocsrv", "storedir":
"/insert/path/to/data/directory", "p_length": 64, "pore_rad": 5

[ffs_control]
enable parallel escape runs
parallel_escape = 1
...
use 100000 integration steps for each MD escape trace
escape_steps = 100000

[auto_interfaces]
use automatic interface placement
auto_interfaces = 1
minimal distance between interfaces
auto_mindist = 0.001
maximum number of calculation steps for exploring runs
auto_max_steps = 100000
minimum acceptable estimated flux
auto_flux_min = 0.4
maximum acceptable estimated flux
auto_flux_max = 0.6
use exploring scouts method. Clients must support this.
auto_histo = 1

[hypersurfaces]
borderA = lambda_A = lambda_0
borderA = 17.0
borderB = lambda_B = lambda_n
borderB = 33.0

[runs_per_interface]
borderA = lambda_A = lambda_0
borderA = 200
borderB = lambda_B = lambda_n
borderB = 100

3.3.2 Client

Navigate to the ‘client’ folder of the ‘freshs’ directory. Copy the client example
configuration file to a new configuration file for our simulation:

cp client-sample.conf client-espresso-ffs_tutorial.conf

Open the file with an editor of your choice and change the following sections:

[general]
the host to connect to, if you only use your machine, set this to localhost
host = localhost
port of the server which you entered in the server’s config
port =
...
the path to the Espresso executable (no quotes, absolut path!)
executable = /home/myusername/espresso/Espresso
location of the harness dir where the ’job_script’ is located (no quotes!)
(will be created in the next section)
harness = ../harnesses/espresso-ffs_tutorial
...
set unix niceness to 19 to not disturb other processes...
nice_job = 19

[ffs_control]

7

Rare Event Sampling with FRESHS and ESPResSo

ESPResSo is capable of checking the order parameter
checking_script = 1

3.4 Preparing the harness script

The harness script for this tutorial is based on the espresso plain example from
the harness directory and is located at

harnesses/espresso-ffs_tutorial

Open the file job script and get a general idea what this script does (the com-
ments in the file should help a lot). Then, look for comments containing a
‘TODO’ and fix the particular parts. Hints:

• calc rc: [lindex [part <id>] 4] gives the z-coordinate of the par-
ticle with index id. Loop over all particles with ids 0 to $p length.

• The command to add something to a TCL list is ‘lappend’.

The harness script contains sections to visualize the polymer using VMD. There-
fore, VMD must be installed. However, this is only reasonable for the first run,
to ensure that the system is set up correctly. For the productive run, this
sections should be commented, you’ll see why when you start the client.

4 Launching FRESHS

FRESHS consists of two separate python programs, the server and the client.
Parallelism is achieved by running multiple copies of the client; which are con-
trolled centrally by the server. In addition, ESPResSo can calculate the physics
in parallel, too. Note, that this makes only sense for larger systems, not for
a polymer of 64 beads like in our example. Here, it should be faster to use
multiple clients.

Open a new terminal, navigate to the server directory and start the server
with

python main_server.py -c server-espresso-ffs_tutorial.conf

This should start the server which listens now on the specified port. Open a
new terminal (or a new tab in the current session for better overview), navigate
to the client directory and start a client using

python main_client.py -c client-espresso-ffs_tutorial.conf

which starts a client connecting to the server.
If things aren’t working, then check the error messages and make sure that

you set the right paths to the harness and to the various executables. If things
are hanging you can e.g. kill all clients using the following command:

kill ‘ps -ef | grep main_client.py | grep client-espresso-ffs | awk ’{print $2}’‘

If everything is running, have a look at the command line output of the
server and if you see numbers counting up, lean back and relax, grab a coffee or
go to the toilet. Then proceed with the next section.

8

Rare Event Sampling with FRESHS and ESPResSo

Figure 3: View of the database with SQLite Manager.

5 Analysis tools

FRESHS saves a comprehensive description of everything it has done into an
SQL database, which by default goes into the directory ‘DB’. This database is
deeply informative, but is not immediately readable, so a number of scripts are
provided to construct graphs based on the information within. At the end of a
simulation, a summary of the simulation is printed and the interface information
and transition rates are saved in the ‘OUTPUT’ directory. In addition to that,
several post-processing tools which read out the database can be applied.

5.1 Database view

If you have the ‘sqlitebrowser’ or the firefox ‘SQLite Manager’ plugin installed,
then use them to have a look at the raw data which comprises the output
database, really it is just a big table of simulation information with one row
for each trajectory fragment (fig. 3), which contains the state at the end of the
fragment, as well as enough information to re-generate it (i.e. a pointer to the
parent fragment, and an RNG seed). The database can be already analyzed and
viewed during the simulation. Note, that you should not write to the database
during the simulation, handle with care. If the simulation fails at a certain
stage, data can be modified/deleted, and the simulation can be resumed from
the last state in the database using the ‘-r’ flag of the server.

5.2 Analysis scripts

The folder ‘scripts’ in your FRESHS directory contains analysis scripts which
can be used directly to e.g. backtrack successful runs or to serve as templates
for own analysis scripts.

5.2.1 Backtracking successful runs

Change to the ‘scripts’ folder and run the following script:

./ffs_buildTree_success.py ../server/DB/<timestamp>_configpoints.sqlite

The output is written to a folder called ‘OUTPUT/timestamp’. Change to this
directory, start gnuplot and plot the tree graph to visualize the traces which
lead to the points on the last known interface (fig. 4):

load "tree_success.gnuplot"

9

Rare Event Sampling with FRESHS and ESPResSo

Figure 4: Backtracking successful runs is already possible during the simulation.
Then, the runs are backtracked from the last known interface.

5.2.2 Interface statistics

To plot statistical information about the simulation, e.g. a histogram of the
runtime of the clients or a histogram of the calculation steps, run

./ffs_interfaces_statistics.py ../server/DB/<timestamp>_configpoints.sqlite

The output is written again to the folder called ‘OUTPUT/timestamp’. Change
to this directory, start gnuplot and plot the histograms:

load "histo_runtime.gnuplot"
load "histo_calcsteps.gnuplot"

5.2.3 Analyzing custom data

Use the template ‘scripts/ffs customdata.py’ to write a script which plots the
reaction coordinate distribution from the field ‘customdata’ of the database for
each interface. This can already be applied when the simulation is still running
like the analysis examples before.

#!/usr/bin/python

import sys
sys.path.append(’../server/modules’)
sys.path.append(’../server/modules/ffs’)

custom
import configpoints

def extract_customdata(interface,dbhandle):
customdata = dbhandle.return_customdata(interface)
floatdata = []
for el in customdata:

for el2 in el.split():
floatdata.append(float(el2))

return floatdata

if len(sys.argv) < 2:
print "Usage:", sys.argv[0], "<../server/DB/configpoint-DB-file>"
exit(1)

cfph = configpoints.configpoints(’none’, sys.argv[1])

maxlam = cfph.biggest_lambda()

for i in range(maxlam+1):

10

Rare Event Sampling with FRESHS and ESPResSo

print "Interface", i
print extract_customdata(i,cfph)
TODO: build histograms

6 FAQ and troubleshooting

• Clients do not find the executable:
Please give the absolut path to the executable and check, that it has the
right permissions.

• Killing clients:
Sometimes, clients launched in a thread can not be killed by pressing
CTRL+C. Therefore, it is useful to use e.g.

kill ‘ps -ef | grep main_client.py | grep client-espresso-ffs | awk ’{print $2}’‘

for killing all the clients which are executed with the espresso-ffs config.
Please be careful doing this, you might e.g. first have a look at the output
of the ps and grep combination.

• Speeding up the server:
If the server’s database is located e.g. on a network file system, the access
can be slow. Change the location of the database folder in the server’s
configuration file to a faster location (or create a symbolic link), e.g. a
local hard drive (/tmp directory should be always writeable, but remember
the size limitation), an SSD or a temporary RAM filesystem (tmpfs).

• If a bond of the polymer breaks, consider reducing the timestep of the
simulation (and increase the integration steps per cycle accordingly).

References

[1] K. Kratzer, J. T. Berryman, A. Taudt, and A. Arnold. The Flexible Rare
Event Sampling Harness System (FRESHS). Submitted, 2013.

[2] K. Kratzer, A. Arnold, and R. J. Allen. Automatic, optimized inter-
face placement in forward flux sampling simulations. J. Chem. Phys.,
138(16):164112, 2013.

[3] R. J. Allen, P. B. Warren, and P. R. ten Wolde. Sampling rare switching
events in biochemical networks. Phys. Rev. Lett., 94:018104, 2005.

[4] Rosalind J. Allen, Daan Frenkel, and Pieter Rein ten Wolde. Simulating
rare events in equilibrium or nonequilibrium stochastic systems. J. Chem.
Phys., 124:024102, 2006.

[5] Rosalind J. Allen, Daan Frenkel, and Pieter Rein ten Wolde. Forward flux
sampling-type schemes for simulating rare events: Efficiency analysis. J.
Chem. Phys., 124(19):194111, 2006.

[6] Rosalind J Allen, Chantal Valeriani, and Pieter Rein ten Wolde. Forward
flux sampling for rare event simulations. Journal of Physics: Condensed
Matter, 21(46):463102, 2009.

11

Rare Event Sampling with FRESHS and ESPResSo

[7] C. Valeriani, R. J. Allen, M. J. Morelli, D. Frenkel, and P. R. ten Wolde.
Computing stationary distributions in equilibrium and nonequilibrium sys-
tems with forward flux sampling. J. Chem. Phys., 127:114109, 2007.

[8] Bernward A. Mann Hans-Jörg Limbach, Axel Arnold and Christian Holm.
Espresso – an extensible simulation package for research on soft matter sys-
tems. Comput. Phys. Commun. 174, 9:704–727, 2006.

12

