Computing free energies with PLUMED 2.0

Davide Branduardi Formerly at MPI Biophysics, Frankfurt a.M.

Wednesday, October 16, 13

- Relevance of free energy computation
- Free-energy from histograms: issues
- Tackling the sampling problem
- Tackling the order-parameter problem

Relevance of free energy calculations

* Free energy is a measure of probability $A(s_0) = -k_B T \ln P(s_0)$

Rare event: troubles with ergodic hypothesis

$$k(T) = \frac{k_B T}{hc^0} e^{-\Delta A^{\ddagger}/RT}$$

Now I sampled all the two states. Is it sufficient?

Free energy requires statistics! $\Delta A = -\frac{1}{\beta} \ln \frac{N_1}{N_2}$

A test on ATP-Mg²⁺ in water

ATP⁴⁻-Mg²⁺ is of fundamental importance in bioenergetics and regulation Free energy of α β γ to β γ

[1] Liao, Sun, Chandler, Oster Eur. Biophys. J. 2004, vol. 33, p. 29

Ergodic hypothesis: am I visiting all the states?

Classical MD, CHARMM27 force field, 915 TIP3P water molecules, GROMACS 4.5.5 code

Replica exchange methods: multiple simulations at different temperatures or Hamiltonians

<u>Biased dynamics:</u> add a potential function along the degree(s) of freedom you want to accelerate

Biased dynamics + Replica exchange

Thermodynamic-Integration-like approaches

* The ancestor is mean force calculation through <u>harmonic potential</u> $F(s) = -k_B T \ln P(s)$

$$\frac{\partial F(s)}{\partial s}\Big|_{s_0} = -k_B T \frac{1}{\int e^{-\frac{V(x)}{k_B}} \delta(s'(x) - s) dx} \frac{\partial}{\partial s} \int e^{-\frac{V(x)}{k_B}} \delta(s'(x) - s) dx\Big|_{s_0}$$

* Dirac delta function \approx Gaussian function (I like this trick!)

$$\frac{\partial F(s)}{\partial s}\Big|_{s_0} \simeq -k_B T \frac{1}{\int e^{-\frac{V(x)}{k_B T}} e^{-\frac{k}{2k_B T}(s'(x)-s)^2} dx} \frac{\partial}{\partial s} \int e^{-\frac{V(x)}{k_B T}} e^{-\frac{k}{2k_B T}(s'(x)-s)^2} dx\Big|_{s_0}$$

* It is an average of a biased simulation!

$$\frac{\partial F(s)}{\partial s}\Big|_{s_0} \simeq -\frac{1}{\int e^{-\frac{V(x)+k/2(s'(x)-s_0)^2}{k_BT}}} \int k(s'(x)-s_0)e^{-\frac{V(x)+k/2(s'(x)-s_0)^2}{k_BT}}dx$$

 $= -k\langle s'(x) - s_0 \rangle_{bias,s0}$ (opposite of the "mean force")

Thermodynamic Integration 101

- Make a constrained simulation (go over barrier!)
- * Acquire mean force
- * Integrate

Sloping, slatted, wooden platforms are preferable for sheep dragging.

© J. Culvenor

An example with ATP-Mg²⁺

Thermodynamic-Integration-like approaches

* Thermodynamic integration

Beveridge, DiCapua, Annu Rev Biophys Biophys Chem 1989, vol 18, pp. 431.

- * WHAM Roux, Comp Phys Comm 1995, vol. 91, pp. 275.
- * Free energy perturbation Beveridge, DiCapua, Annu Rev Biophys Biophys Chem 1989, vol 18, pp. 431.
- * Jarzynski-equation based approaches (steered-MD) Jarzynski Phys Rev Lett 1997, vol. 78, pp. 2690.
- * Crooks-equation based approaches (two directions steered-MD) Crooks J Stat Phys 1998, vol. 90, pp. 1481.

Avoid recoding with **FULED**

Each single engine had only few enhanced sampling techniques (according developers' interests)

in NAMD, GROMACS, AMBER, LAMMPS, QUANTUM-ESPRESSO

https://github.com/plumed/plumed2

Bonomi, Branduardi, Bussi, Camilloni, Provasi, Raiteri, Donadio, Marinelli, Pietrucci, Broglia, Parrinello, M. Comp. Phys. Commun. 2009, 180, 1961–1972.

Tribello, Bonomi, Branduardi, Camilloni, Bussi Comp. Phys. Commun. (2013) in press.

Now in ESPResSo: http://davidebr.github.io/espresso/

Plumedized ESPResSo

The ESPResSo package - Plumed 2.0 enhanced

Download .tar.gz

Tiew on GitHub

Welcome ESPResSo package. A Plumed 2.0 enhanced version.

This is a fork from the ESPReSso project which is intended to integrate the Plumed 2.0 code into ESPReSso package.

Plumed 2.0 is intended to give enhanced sampling capabilities to ESPResSo molecular dynamics engine.

It is still experimental, so use it at your own peril.

The documentation of Plumed 2.0 is on Github as well. It is regularly updated.

In order to compile it you should download the zip/tar.gz package up in this page.

You need also have Plumed 2.0 installed. You can get it from Plumed 2.0 code website. If you need a bleeding edge version please visit this page.

How to set this up in PLUMED?

An example with ATP-Mg²⁺

Adaptive methods: Torrie & Valleau^[3]

[3] Torrie, Valleau J. Comp. Phys, 1977 vol. 23, pp 187

essons from Torrie & Valleau

* allow to measure free energies: useful

* allow to overcome barriers: <u>cheap</u>

* need only an additional energy term to standard force field: <u>easy</u>

Adaptive sampling methods

- * Adaptive Biasing Force Darve & Pohorille, J. Chem. Phys. 2001, vol. 115, pp. 9169.
- * Adaptive Umbrella Sampling Mezei, M. J Comput Phys 1987, vol. 68, pp. 237.
- * Self Healing Umbrella Sampling Marsili et. al J. Chem. Phys. B vol. 110, pp. 14011.
- * Metadynamics Laio & Parrinello, PNAS 2002, vol. 20, pp. 12562.
- * Conformational Flooding Grubmüller, Phys Rev E 1995, vol. 52, pp. 2893.

* ...

Enhanced sampling: metadynamics

• Apply a repulsive gaussian potential up to compensate the underlying free energy:

$$V_g(t, s(\mathbf{x})) = \sum_{i=1}^{N_{hills}} W \ e^{-\frac{(s(\mathbf{x}) - s_i)}{2\sigma^2}}$$
$$\widetilde{H}(t, \mathbf{x}) = H(\mathbf{x}) + V_g(t, s(\mathbf{x}))$$

- Produces a non markovian dynamics. The negative of the potential deposited is proven to converge to the correct free energy surface ^[6]
- Transition between metastable states are enhanced by artificial removal of metastable states

[4] Laio & Parrinello, PNAS 2002, vol. 20, p. 12562.
[5] Bussi & Laio, Parrinello Phys. Rev. Lett. 2006, vol 96, p. 90601
[6] Branduardi, Bussi, Parrinello, J. Chem. Theory Comput. 2012, vol 8, p. 2247
Wednesday, October 16, 13

How to set this up in PLUMED?

<pre></pre>	
<pre>/* /* Metadynamics: add a hill of 0.6 /* every 500 ps, large 0.015nm, and use a /* grid (to make it faster) /* /* /* /* /* /* /* /* /* /* /* /* /*</pre>	$V_g(t, s(\mathbf{x})) = \sum_{i=1}^{N_{hills}} W \ e^{-\frac{(s(\mathbf{x}) - s_i)}{2\sigma^2}}$ $\widetilde{H}(t, \mathbf{x}) = H(\mathbf{x}) + V_g(t, s(\mathbf{x}))$
<pre># prevent the system to explore unwanted regions # UPPER_WALLS ARG=d AT=0.65 KAPPA=100 EPS=0.3 EXP=4 LABEL=dwall > coordination PH0 + SOD</pre>	$c(\mathbf{X}) > 0.65 : U(\mathbf{X}) = 100 \left(\frac{d(\mathbf{X}) - 0.65}{0.3}\right)^4$ $c(\mathbf{X}) < 0.65 : U(\mathbf{X}) = 0$
COORDINATION LABEL=coor GROUPA=41,42,43,37,38,33,34 GROUPB=45,46 NN=8 MM=12 D_0=0.0 R_0=0.5 COORDINATION # wall on the coordination UPPER_WALLS ARG=coor AT=0.2 KAPPA=10000 EXP=4 LABEL=uwall # some printouts PRINT ARG=* STRIDE=100 FILE=COLVAR ENDPLUMED	$C(2\mathbf{x}) < 0.00^{\circ}$. $C(2\mathbf{x}) = 0.$

A test on ATP-Mg²⁺ in water: meta with distance

Adaptive sampling vs TI-like methods

Adaptive sampling:

- * The problem is multidimensional but probably the accessible phase space is limited: they explore only what you need
- * The free energy landscape has competitive, parallel reactive paths (solvent degrees of freedom, rotations) that can be overcome at some point

<u>TI-like:</u>

- * In 1-d (max 2-d, via WHAM or, better with rbf fitting schemes) very effective
- * Sometimes trivially parallel (many umbrellas at same time)

Misconceptions in free energy calculations

Technique (TI, WHAM, SMD, MetaD, ABF?)

Choice of order parameter

Misconceptions in free energy calculations

Technique (TI, WHAM, SMD, MetaD, ABF?)

Choice of order parameter

The importance of the order parameter

Different order parameters give different landscapes

[7] Eyring, Chem. Rev. 1935 vol. 17 p 65

How to choose the order parameter

Different order parameters give different landscapes

PRO: the best perspective has good convergence and rates! **CONS**: it is a trial and error procedure!

Wednesday, October 16, 13

Path free energy calculations

 Monodimensional nonlinear mapping of the transition in terms of many coordinates

- * Adaptive (it uses information from a previous transition)
- * Preserves low dimensional description for efficiency
- * Allows extensions (distance from path)
- * Beyond metadynamics: Steered molecular dynamics and others

[8] Branduardi, Gervasio, Parrinello, J. Chem. Phys. 2007, vol.126, p. 054103.

Path collective variables: ATP-Mg²⁺

the shape is conserved, the free energy difference has smaller fluctuations!

PLUMED provides many CVs: are they enough?

ANGLE	Calculate an angle.
CELL	Calculate the components of the simulation cell
CONSTANT	Return a constant quantity.
CONTACTMAP	Calculate the distances between a number of pairs of atoms and transform each distance by a switching function.
COORDINATION	Calculate coordination numbers.
CS2BACKBONE	This collective variable calculates the backbone chemical shifts for a protein (CA, CB, C', H, HA, N) using the CamShift method Kohlhoff:2009us. The backcalculated chemical shifts are then compared with a set of provided chemical shifts to generate a score Robustelli:2010dn Granata:2013dk.
DHENERGY	Calculate Debye-Huckel interaction energy among GROUPA and GROUPB.
DIPOLE	Calcualte the dipole moment for a group of atoms.
DISTANCE	Calculate the distance between a pair of atoms.
DRMSD	Calculate the distance RMSD with respect to a reference structure.
ENERGY	Calculate the total energy of the simulation box.
FAKE	This is a fake colvar container used by cltools or various other actions and just support input and period definition
GYRATION	Calculate the radius of gyration, or other properties related to it.
PATHMSD	This Colvar calculates path collective variables.
PROPERTYMAP	Calculate generic property maps.
RMSD	Calculate the RMSD with respect to a reference structure.
TEMPLATE	This file provides a template for if you want to introduce a new CV.
TORSION	Calculate a torsional angle.
VOLUME	Calculate the volume of the simulation box.
ALPHARMSD	Probe the alpha helical content of a protein structure.
ANTIBETARMSD	Probe the antiparallel beta sheet content of your protein structure.
PARABETARMSD	Probe the parallel beta sheet content of your protein structure.

Plumed provides many CVs : combine with functions

Plumed provides many CVs : matheval

# time and functions of time	
t: TIME	c(t) = cos(0.5t - 1.028)
cos: MATHEVAL ARG=t VAR=t FUNC=cos(t/21.02849029) PERIODIC=N0	c(t) = cos(0.5t - 1.020)
sin: MATHEVAL ARG=t VAR=t FUNC=sin(t/21.02849029) PERIODIC=N0	e(t) = ein(0.5t - 1.028)
<pre># the center of mass of two groups:the axis</pre>	S(t) = St t (0.5t - 1.020)
c3: COM ATOMS=7,9	
# the rotating group: center of mass	
C4: COM ATOMS=1,5,6	
# this produces the components x,y,Z	
d: DISTANCE COMPONENTS ATOMS=c4,c3	
## running cosine and sine values	
mycos: MATHEVAL ARG=a.x,a.y VAR=x,y FUNC=x/sqrt(X*x+y*y) PERIODIC=NU	
mysin: MATHEVAL ARG=d.x,d.y VAR=x,y FUNC=y/sqrt(x*x+y*y) PERIODIC=NO	
APG-mycos mysin cos sin	
VAR-mc ms c s	
$FIINC = 100*((mc-c)^2+(ms-s)^2)$	
PERTODIC=NO	
LABEL=vv1	
MATHEVAL	
## add a bias on the value calculated by vv1	
cc: BIASVALUE ARG=vv1	
PRINT ARG=cos,sin,mycos,mysin,cc.bias.vv1 STRIDE=1 FILE=colvar FMT=%8.4f	
ENDPLUMED	

$$U(\mathbf{X}, t) = 100 * [(s(t) - sin(\mathbf{X}))^2 + (c(t) - cos(\mathbf{X}))^2]$$

http://www.gnu.org/software/libmatheval/

Plumed provides many CVs : matheval

Plumed is also a set of tools

davidebranduardi: ~/Programs/plumed2 >plumed help
Usage: plumed [options] [command] [command options]
plumed [command] -h : to print help for a specific command
Options:
[help -h help] : to print this help
[has-mpi] : fails if plumed is running without MPI
[has-matheval] : fails if plumed is compiled without matheval
<pre>[has-almost] : fails if plumed is compiled without almost</pre>
[has-dlopen] : fails if plumed is compiled without dlopen
<pre>[load LIB] : loads a shared object (typically a plugin library)</pre>
[standalone-executable] : tells plumed not to look for commands implemented as scripts
Commands:
plumed driver : analyze trajectories with plumed
plumed driver-float : analyze trajectories with plumed (single precision version)
plumed gentemplate : print out a template input for a particular action
plumed info : provide informations about plumed
plumed manual : print out a description of the keywords for an action in html
plumed simplemd : run lj code
plumed sum_hills : sum the hills with plumed
plumed mklib : compile a .cpp file into a shared library
plumed newcv : create a new collective variable from a template
plumed patch : patch an MD engine
davidebranduardi: ~/Programs/plumed2 >

- * Enhanced sampling method makes you cross barriers
- * Free energies can be calculated from biased dynamics
- * Free energies depends on the technique and from the order parameter
- Order parameters are as important as the accelerated sampling method
- * PLUMED offers a flexible tool to access a variety of methods and collective variables
- * Beyond what I shown here: mixed replica exchange/biased dynamics (PT-WTE, PT-MetaD, Bias Exchange)
- * Even more: String methods

Acknowledgements

Giovanni Bussi (SISSA, Trieste) Max Bonomi (UCSF, San Francisco) Gareth Tribello (Queen's University, Belfast) Carlo Camilloni (Cambridge University) Michele Parrinello (ETH, Zurich)

