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Soft matter systems cover a broad 
range of time- and length-scales

Tailored methods have been developed 
to tackle specific cases
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The resolution of a simulation is chosen 
based on the process of interest

Chemistry-specific 
interactions

Large-scale properties, 
conformational transitions, 

phase ordering

All-atom 
force-fields, 

DFT

Coarse-grained 
models

Expensive

No detail

$



Dual resolution simulations: concurrent use of different resolutions in 
separate regions of the simulation domain

Example: QM/MM simulation methods
A small region is treated at the quantum level, 

the rest with classical force fields



Dual resolutions of soft matter: atomistic and coarse-grained

High-resolution region,
where the atomistic detail is kept

Low-resolution region,
where molecules are coarse-grained



Dual resolutions of soft matter: atomistic and coarse-grained

How are these two regions    interfaced?

High-resolution region,
where the atomistic detail is kept

Low-resolution region,
where molecules are coarse-grained



Interpolation of force-fields

AA region
All atoms interact explicitly

w(x) = 1

CG region
Only CG centers interact

w(x) = 0

Hybrid region
Forces are mixed

0 < w(x) < 1



Interpolation of force-fields
AdResS - Adaptive Resolution Simulation scheme
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AA region
All atoms interact explicitly

w(x) = 1

CG region
Only CG centers interact

w(x) = 0

Hybrid region
Forces are mixed
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Coarse-grained potentials usually don’t 
match the atomistic system’s virial pressure

The difference can be balanced via an 
iteratively-refined thermodynamic force [1]
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[1] S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, and 
K. Kremer, Phys Rev Lett 17, vol 108, 2012 [Figures from therein]

Control of the thermodynamics
in the explicit region
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Density and particle 
fluctuations are preserved
The explicit region behaves 

as an open system

Control of the thermodynamics
in the explicit region



Validation and applications
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Application of AdResS for
“open-boundaries” simulations 

Figure 8. In the middle panel, we shown the AdResS setup of the tri-glycine solvated in aqueous urea. The all-
atom region is chosen to be of 2nm in radius and the hybrid region has the width of 1.3nm. The centre-of-mass
of the tri-glycine is constrained at the centre of the simulation domain and hence the peptide stays within the
all-atom region throughout the simulation run. The coarse-grained urea molecules are rendered in green and the
coarse-grained water molecules are rendered in silver. The magnified snapshot of the tri-glycine in 2.00M and
8.02M solutions are shown in the left and right panels, respectively. Partially adopted from Ref. 28.

and (b) the calculation of KBIs. As of (a), by comparing different force fields, it was
shown that the deviation from the linear dependence was more for peptide simulated using
AMBER than the GROMOS force field. (b) The peptide used in Ref. 12 consisted of ten
amino acids, where the calculation of KBI from the pair distribution function is nontriv-
ial and can lead to uncontrolled deviations of the solvation free energies that are extremely
sensitive to the values of KBIs (see Eq. 10). In our study, for a triglycine, we observe a nice
linear dependence for cu  6M urea concentration. For cu > 6M, �Gtg deviates away
from the linear dependence to somehow approach a plateau value (see Fig. 9(b)). These
observations are consistent with the known facts that the thermodynamic driving force, to-
wards better solubility, at around 8.02M urea7, 13 and thus leading to protein denaturation
in aqueous urea solutions. Another quantity that can be derived from the Fig. 9(b) is the
m-value for peptide solvation, which is defined as

m-value =

@�Gtg

@cu
. (12)

If we take the m-value (per residue) from the slope of the linear fit in the Fig. 9(b), we
find �0.164 KJ mol

�2
L. This value is in a close agreement with the experimental value

of �0.163 KJ mol

�2
L

12, 54. It is yet important to mention that the calculation of m-values
from the simulations assume the equal contribution of each residue of a tri-glycine, which
is reasonable as long as we choose a peptide with only a few amino acids. However, for
large peptides this approximation leads to extreme deviations from the experimentally ob-
served value, as in the case of decaglycine where m-value was found to be three times
larger that the expected experimentally value12. Therefore, our new open boundary simu-
lation approach, applied to a simple test case of tri-glycine, could capture all the necessary
ingredients of the solvation thermodynamics of the bio(macro)molecules.
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Triglycine solvated 
in aqueous urea
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Figure 5. Normalized density profile for both components of the aqueous methanol mixture as a function of the
distance from the centre of the simulation domain. Results are shown for both before (black curves) and after (red
curves) the application of thermodynamic force, shown in Eq. 11. Large oscillations at the small r values are due
to the poor statistics. Vertical lines represent the boundary of the hybrid region. Partially adopted from Ref. 24.

can be calculated over several iterations until a flat density profile is obtained. It can be
appreciated that the overall uniform density profile is observed after the application of ther-
modynamic force, see the red curves in Fig. 5. This thermodynamic force is added together
with the extrapolation forces in Eq. 1, then the full blown AdResS simulations are run for
40ns long trajectory. Using the AdResS simulation runs, we calculate KBIs within the
all-atom region of the AdResS setup. In the top panel of Fig. 6, we show the comparative
KBIs between water molecules calculated for a mixture of 75% methanol mole fractions.
It can be appreciated that the KBI calculated within the all-atom region of the AdResS
setup reproduces almost perfect convergence comparable to the full blown all-atom system
of a much bigger system size. It still need to be mentioned that the all-atom region in the
AdResS setup only accommodates approximately 700 molecules, yet we see perfect con-
vergence of KBI, which otherwise would be impossible within a closed boundary all-atom
setup of same system size consisting of 700 molecules. We have also shown the particle
number fluctuation within the all-atom region of the AdResS setup, calculated using Eq. 8.
Furthermore, the the running averages of KBI shows well controlled oscillations around
the particle number fluctuation. This gives an indication that our approach captures correct
concentration fluctuations and thus making the all-atom region, of the AdResS setup, an
“effective” open boundary. To test the robustness of our approach, we have also calcu-
lated KBIs over full concentration range of methanol. Results are shown in the bottom
panel of Fig. 6. Gij’s are calculated using different methods are consistent and also shows
reasonably good agreement with the existing experiments43, 50. Note: Ideally the value of
KBI should be calculated when the G(r) converges to a plateau. However, within the mid
sized simulation domains, G(r) still shows oscillations upto a maximum distances that are
possible from these system sizes. Therefore, we take the average of G(r) between 0.9nm
and 1.5nm over which G(r) oscillates in a controlled manner around an average value.
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Example of density correction 
in a methanol-water mixture

D. Mukherji, N. F. A. van der Vegt, K. Kremer, and L. Delle Site, JCTC. 8, 375 (2012)
D. Mukherji, N. F. A. van der Vegt, and K. Kremer, JCTC 8, 3536 (2012)

A two-component solvent requires 
two thermodynamic force terms

When the correct particle fluctuations are important 
large simulation boxes are needed
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Example of density correction 
in a methanol-water mixture

Very time-consuming! :(

D. Mukherji, N. F. A. van der Vegt, K. Kremer, and L. Delle Site, JCTC. 8, 375 (2012)
D. Mukherji, N. F. A. van der Vegt, and K. Kremer, JCTC 8, 3536 (2012)

A two-component solvent requires 
two thermodynamic force terms

When the correct particle fluctuations are important 
large simulation boxes are needed



Pros and cons of the force-based approach
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The H-AdResS method
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RP, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. 
Everaers and D. Donadio, Phys. Rev. Lett. 110, 108301 (2013)



The H-AdResS method

The total energies
of the molecules

are weighted by the
switching function
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The force in the hybrid region is proportional 
to the difference of Helmholtz free energy 

between AA and CG models
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To remove the pressure imbalance between AA and CG we employ 
Gibbs free energy difference:
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MicroCanonical simulations
Energy-conserving simulations of a simple toy model system

• Tetrahedral purely-repulsive molecules
• The CG potential is NOT parametrized 

on the AA system
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NVT simulations
Thermostated simulation of a water system

The CG potential is NOT parametrized on the AA system
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Extension to multicomponent systems

How can we control the thermodynamics of both species?

HMIX = K + V int

+
X
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⇥
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CG
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⇤

+
X
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Hamiltonian of a binary mixture
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Extension to multicomponent systems

HMIX
� = HMIX �

X

a2A

�HA(�a)�
X

b2B

�HB(�b)

�Hk(�) =
�Fk(�)

Nk
+

�pk(�)

⇢?k

All compensation terms are computed with
a single Kirkwood Thermodynamic Integration



The Free Energy Compensation method 
as a replacement for coarse-graining

The hybrid region can interface 
arbitrarily different models while 

preserving the equilibrium properties 
of the high-resolution region

A problem-specific CG interaction 
can be chosen at will

Accurate coarse-graining of the 
high-resolution system is thus

not necessary



Monte Carlo simulation
of a binary mixture - Case I

Binary mixture composed by
two DIFFERENT species in EQUAL proportions

The SAME coarse-grained model is used for both



Monte Carlo simulation
of a binary mixture - Case I
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Monte Carlo simulation
of a binary mixture - Case I
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Monte Carlo simulation
of a binary mixture - Case I
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Monte Carlo simulation
of a binary mixture - Case II

Binary mixture composed by
two EQUAL species in DIFFERENT proportions

The SAME coarse-grained model is used for both



Monte Carlo simulation
of a binary mixture - Case II

Binary mixture composed by
two EQUAL species in DIFFERENT proportions
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Monte Carlo simulation
of a binary mixture - Case II

Binary mixture composed by
two EQUAL species in DIFFERENT proportions
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Monte Carlo simulation
of a binary mixture - Case II

Binary mixture composed by
two EQUAL species in DIFFERENT proportions
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Monte Carlo simulation
of a binary mixture - Case III

Binary mixture in contact with an attractive wall
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•Different species in equal proportions
•All atoms interact with the wall 
through a LJ potential

RP, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers and D. Donadio,
Phys. Rev. Lett. 111, 060601 (2013)



Monte Carlo simulation
of a binary mixture - Case III

Binary mixture in contact with an attractive wall
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Take-home message
AdResS / H-AdResS: force-based or energy-based dual resolution 
simulation methods

The force-based approach preserves Newton3 exactly, but it’s not 
conservative (a local thermostat is needed)

The energy-based approach is Hamiltonian, but in the hybrid region 
Newton3 is satisfied only on average

Pros of having a Hamiltonian: NVE and MC possible, efficient Free 
Energy Compensation calculation, arbitrary CG model

Applications in accretion processes (crystal growth, self-assembly), 
free energy calculations, classical/QM coupling (Path Integrals)
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AdResS / H-AdResS: force-based or energy-based dual resolution 
simulation methods

The force-based approach preserves Newton3 exactly, but it’s not 
conservative (a local thermostat is needed)

The energy-based approach is Hamiltonian, but in the hybrid region 
Newton3 is satisfied only on average

Pros of having a Hamiltonian: NVE and MC possible, efficient Free 
Energy Compensation calculation, arbitrary CG model

Applications in accretion processes (crystal growth, self-assembly), 
free energy calculations, classical/QM coupling (Path Integrals)

Both AdResS and H-AdResS are implemented in Espresso++!!!
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