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1 Introduction

This tutorial introduces some of the features of ESPResSo by constructing step by step
a simulation script for a simple salt crystal. We cannot give a full Tcl tutorial here;
however, most of the constructs should be self–explanatory. We also assume that the
reader is familiar with the basic concepts of a MD simulation here. The code pieces can
be copied step by step into a file, which then can be run using Espresso <file> from
the ESPResSo source directory.

2 Basic set up

Our script starts with setting up the initial configuration. Most conveniently, one would
like to specify the density and the number of particles of the system as parameters:

set n_part 200; set density 0.7

set box_l [expr pow($n_part/$density,1./3.)]

These variables do not change anything in the simulation engine, but are just standard
Tcl variables; they are used to increase the readability and flexibility of the script. The
box length is not a parameter of this simulation; it is calculated from the number of
particles and the system density. This allows to change the parameters later easily, e. g.
to simulate a bigger system.

The parameters of the simulation engine are modified by the setmd command. For
example

setmd box_l $box_l $box_l $box_l

setmd periodic 1 1 1

defines a cubic simulation box of size box_l, and periodic boundary conditions in all
spatial dimensions. We now fill this simulation box with particles

set q 1; set type 0

for {set i 0} { $i < $n_part } {incr i} {

set posx [expr $box_l*[t_random]]

set posy [expr $box_l*[t_random]]

set posz [expr $box_l*[t_random]]

set q [expr -$q]; set type [expr 1-$type]

part $i pos $posx $posy $posz q $q type $type

}

This loop adds n_part particles at random positions, one by one. In this construct,
only two commands are not standard Tcl commands: the random number generator
t_random and the part command, which is used to specify particle properties, here the
position, the charge q and the type. In ESPResSo the particle type is just an integer
number which allows to group particles; it does not imply any physical parameters. Here
we use it to tag the charges: positive charges have type 0, negative charges have type 1.

Now we define the ensemble that we will be simulating. This is done using the
thermostat command. We also set some integration scheme parameters:
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setmd time_step 0.01; setmd skin 0.4

set temp 1; set gamma 1

thermostat langevin $temp $gamma

This switches on the Langevin thermostat for the NVT ensemble, with temperature
temp and friction gamma. The skin depth skin is a parameter for the link–cell system
which tunes its performance, but cannot be discussed here.

Before we can really start the simulation, we have to specify the interactions between
our particles. We use a simple, purely repulsive Lennard-Jones interaction to model the
hard core repulsion, and the charges interact via the Coulomb potential:

set sig 1.0; set cut [expr 1.12246*$sig]

set eps 1.0; set shift [expr 0.25*$eps]

inter 0 0 lennard-jones $eps $sig $cut $shift 0

inter 1 0 lennard-jones $eps $sig $cut $shift 0

inter 1 1 lennard-jones $eps $sig $cut $shift 0

puts [inter coulomb 10.0 p3m tunev2 accuracy 1e-3 mesh 32]

The first three inter commands instruct ESPResSo to use the same purely repulsive
Lennard–Jones potential for the interaction between all combinations of the two parti-
cle types 0 and 1; by using different parameters for different combinations, one could
simulate differently sized particles. The last line sets the Bjerrum length to the value
10, and then instructs ESPResSo to use P3M for the Coulombic interaction and to try
to find suitable parameters for an rms force error below 10−3, with a fixed mesh size of
32. The mesh is fixed here to speed up the tuning; for a real simulation, one will also
tune this parameter. The puts statement will show the parameters and timings that
the tuning found. Tuning takes some time; if you run many simulations with similar
parameters, you might want to save and reload the P3M parameters. You can obtain
the P3M parameters by inter coulomb:

set p3m_params [inter coulomb]

They are printed in a format suitable to feed them back to the inter command:
eval inter $p3m_params

eval inter $p3m_params

3 Running the simulation

Now we can integrate the system:
set integ_steps 200

for {set i 0} { $i < 20 } { incr i} {

set temp [expr [analyze energy kinetic]/((3/2.0)*$n_part)]

puts "t=[setmd time] E=[analyze energy total], T=$temp"

integrate $integ_steps

}

This code block is the primary simulation loop and runs 20×integ_steps MD steps.
Every integ_steps time steps, the potential, electrostatic and kinetic energies are
printed out. The latter one is printed as temperature, by rescaling by the number
of degrees of freedom (3) multiplied by 1/2kT . Note that energies are measured in kT ,
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so that only the factor 1/2 remains. Also note that 3/2 is written as 3/2.0; otherwise
Tcl will perform an integer division, resulting in 1 instead of 1.5.

Note, that in ESPResSo there are usually 3 translational degrees per particle. However,
if ROTATION is compiled in, there are in addition 3 rotational degrees of freedom, which
also contribute to the kinetic energy. You can get this number in the following way 1:

if { [regexp "ROTATION" [code_info]] } {

set deg_free 6

} {

set deg_free 3

}

Then all you need to do is to replace the hardcoded 3 by $deg_free.

However, if you run the simulation, it will still crash: ESPResSo complains about
particle coordinates being out of range. The reason for this is simple: Due to the initial
random setup, the overlap energy is around a million kT, which we first have to remove
from the system. In ESPResSo, this is can be accelerated by capping the forces, i. e.
modifying the Lennard–Jones force such that it is constant below a certain distance.
Before the integration loop, we therefore insert this equilibration loop:

for {set cap 20} {$cap < 200} {incr cap 20} {

inter forcecap $cap

integrate $integ_steps

}

inter forcecap 0

This loop integrates the system with a force cap of initially 20 and finally 200. The
last command switches the force cap off again. With this equilibration, the simulation
script runs fine. As a control that the equilibration loop works correctly, you might want
to add the energy and force printing of the integration loop. You can then observe how
the temperature initially overshoots and then relaxes to its target value by the action of
the thermostat.

4 Writing out data

However, it takes some time to simulate the system, and one will probably like to write
out simulation data to configuration files, for later analysis. For this purpose ESPResSo
has commands to write simulation data to a Tcl stream in an easily parsable form.
We add the following lines at end of integration loop to write the configuration files
“config 0” through “config 19”:

set f [open "config_$i" "w"]

blockfile $f write tclvariable {box_l density}

blockfile $f write variable box_l

blockfile $f write particles {id pos type}

close $f

The created files “config ...” are human–readable and look like

1Note: there also exists a predefined tcl function degrees of freedom which does the same.
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Figure 1: VMD Snapshot of the salt system

{tclvariable

{box_l 6.58633756008}

{density 0.7}

}

{variable {box_l 6.58633756008 6.58633756008 6.58633756008} }

{particles {id pos type}

{0 14.7658693713 29.5464807649 -17.5071728732 1}

{1 26.702434508 -37.4986024417 114.617582522 0}

}

As you can see, such a blockfile consists of several Tcl lists, which are called blocks,
and can store any data available from the simulation. Reading a configuration is done
by the following simple script:

set f [open $filename "r"]

while { [blockfile $f read auto] != "eof" } {}

close $f

The blockfile read auto commands will set the Tcl variables box_l and density

to the values specified in the file when encountering the tclvariable block, and set the
box dimensions for the simulation when encountering the variable block. The particle
positions and types of all 216 particles are restored when the particles block is read.
Note that it is important to have the box dimensions set before reading the particles, to
avoid problems with the periodic boundary conditions.

5 Analysis

With these configurations, we can now investigate the system. As an example, we will
create a second script which calculates the averaged radial distribution functions g++(r)
and g+−(r). The radial distribution function for a the current configuration can be
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obtained using the analyze command:
set rdf [analyze rdf 0 1 0.9 [expr $box_l/2] 100]

set rlist ""

set rdflist ""

foreach value [lindex $rdf 1] {

lappend rlist [lindex $value 0]

lappend rdflist [lindex $value 1]

}

The shown analyze rdf command returns the distribution function of particles of
type 1 around particles of type 0 (i. e. of opposite charges) for radii between 0.9 and half
the box length, subdivided into 100 bins. Changing the first two parameters to either
“0 0” or “1 1” allows to determine the distribution for equal charges. The result is a list
of r and g(r) pairs, which the following foreach loop divides up onto two lists rlist and
rdflist.

To average over a set of configurations, we put the two last code snippets into a loop
like this:

set cnt 0

for {set i 0} {$i < 100} {incr i} { lappend avg_rdf 0 }

foreach filename [lrange $argv 1 end] {

set f [open $filename "r"]

while {[blockfile $f read auto] != "eof" } {}

close $f

set rdf [analyze rdf 0 1 0.9 [expr $box_l/2] 100]

set rlist ""

set rdflist ""

foreach value [lindex $rdf 1] {

lappend rlist [lindex $value 0]

lappend rdflist [lindex $value 1]

}

set avg_rdf [vecadd $avg_rdf $rdflist]

incr cnt

}

set avg_rdf [vecscale [expr 1.0/$cnt] $avg_rdf]

Initially, the sum of all g(r), which is stored in avg_rdf, is set to 0. Then the loops
over all configurations given by argv, calculates g(r) for each configuration and adds up
all the g(r) in avg_rdf. Finally, this sum is normalized by dividing by the number of
configurations. Note again the “1.0/$cnt”; also here, this is necessary, since “1/$cnt” is
interpreted as an integer division, which results in 0 for cnt > 1. argv is a predefined
variable: it contains all the command line parameters. Therefore this script should be
called like

Espresso <script> n_nodes [<config>...]

where n_nodes is the number of CPUs ESPResSo should be running on. And because
the first parameter is n_nodes, we need to strip it off, which we do by the lrange list
operation of Tcl.
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Figure 2: Radial distribution functions g++(r) between equal charges (rectangles) and
g+−(r) for opposite charges (circles). The plus symbols denote g(r) for an
uncharged system.

The printing of the calculated radial distribution functions is simple. Add to the end
of the previous snippet the following lines:

set plot [open "rdf.data" "w"]

puts $plot "\# r rdf(r)"

foreach r $rlist rdf $avg_rdf { puts $plot "$r $rdf" }

close $plot

This instructs the Tcl interpreter to write the avg_rdf to the file rdf.data in gnuplot–
compatible format. Fig. 2 shows the resulting radial distribution functions, averaged
over 100 configurations. In addition, the distribution for a neutral system is given,
which can be obtained from our simulation script by simply removing the command
inter coulomb ... and therefore not turning on P3M.

The code example given before is still quite simple, and the reader is encouraged to
try to extend the example a little bit, e. g. by using differently sized particle, or changing
the interactions. If something does not work, ESPResSo will give comprehensive error
messages, which should make it easy to identify mistakes. For real simulations, the
simulation scripts can extend over thousands of lines of code and contain automated
adaption of parameters or online analysis, up to automatic generation of data plots.
Parameters can be changed arbitrarily during the simulation process, as needed for e. g.
simulated annealing. The possibility to perform non–standard simulations without the
need of modifications to the simulation core was one of the main reasons why we decided
to use a script language for controlling the simulation core.
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6 Using the MEMD algorithm

ESPResSo provides a variety of different electrostatics solvers. So far, we have been
introduced to P3M, but in this section we will try something new. A fairly recent
addition to the family of electrostatics solvers is the ”Maxwell Equations Molecular
Dynamics” (MEMD) algorithm. To use it, two parameters have to be set: A mesh size,
and a method parameter called f_mass, which can be estimated following the formula
in the ESPResSo user guide. In this example, a good estimate for the mesh size is 12,
but this can be varied, affecting speed and accuracy of the algorithm.

The MEMD algorithm relies on a very precise spatial distribution of the particles
across processors, and will therefore currently not work with Verlet lists. Since those are
switched on by default, they will have to be turned off manually.

cellsystem domain_decomposition -no_verlet_list

Other than that, you will have to replace the setup of the P3M interaction with an
according MEMD call.

set memd_mesh 12

set f_mass [expr 100.0*pow( ([setmd time_step]*$memd_mesh/$box_l),2.0)]

inter coulomb 10.0 memd $f_mass $memd_mesh

Be sure to comment out the P3M part of your script, otherwise you will have both
algorithms running at the same time, resulting in twice the electrostatic force. In the
example script included within the ESPResSo code, there is already an if-construct
provided and you can switch between the methods at the very top of the script.

You can copy the results from your completed tasks so far to a different filename
(e.g. rdf_p3m.data) for comparison. Then, just run the simulation and analysis again,
and compare the speed and resulting radial distribution function of the two methods.

7 Partially periodic boundary conditions

One of the strengths of ESPResSo is the possibility to simulate charged systems with
partially periodic boundary conditions. As an example, we will modify our script to
simulate our simple salt in a slit pore. The boundary conditions we define now as
follows (note that you need the PARTIAL_PERIODIC feature):

set box_lxy [expr sqrt(2)*$box_l]

set box_lz [expr 0.5*$box_l]

setmd box_l $box_lxy $box_lxy [expr $box_lz + 1.0]

setmd periodic 1 1 0

constraint wall normal 0 0 1 dist 0 type 2

constraint wall normal 0 0 -1 dist [expr -$box_lz - 1.0] type 2

which replaces the previous code setting box_l and periodic. The last two lines add
two confining walls at the top and the bottom of the simulation box. The wall is given by
its normal (pointing up and downwards here), and its distance from (0, 0, 0). Therefore
this defines one wall passing at z = 0, and a second at z = boxlz + 1. Finally, the type
of the wall is used like a particle type to define the interaction of the walls with the
particles.
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Figure 3: Distribution of positive charges ρ+(z) (open squares) and of negative charges
ρ−(z) (closed squares) under confinement along z.

The addition of 1.0 to the slit width is due to the fact that we will use a Lennard-
Jones potential to model the wall; this means that particles of diameter 1.0 cannot come
closer than 1.0 to the wall. In a way, the wall itself therefore has a thickness of 0.5. To
compensate for this, we simply make the box bigger by 1.

We also need to choose the initial positions of our particles to match the new box
dimensions. The particles are generated as before, but we draw the random position
now as follows:

set posx [expr $box_lxy*[t_random]]

set posy [expr $box_lxy*[t_random]]

set posz [expr ($box_lz-1.0)*[t_random] + 1.0]

When defining the interactions, we now also need to add the interactions between the
particles and the walls, which is the same as between the particles:

inter 0 2 lennard-jones $eps $sig $cut $shift 0

inter 1 2 lennard-jones $eps $sig $cut $shift 0

For the electrostatic part, we also need to choose another algorithm, as P3M can only
handle fully periodic boundary conditions. We choose the MMM2D method:

cellsystem layered 3

inter coulomb 1.0 mmm2d 1e-4

which replaces the inter coulomb 10.0 p3m ... code. Note the decreased Bjerrum
length — the confined system would take too long for a tutorial to equilibrate with
Bjerrum length 10.0. Still, equilibrating the system is now more difficult. First, we
cannot simply ramp up all Lennard-Jones interactions anymore; otherwise, particles
will penetrate the walls and break the confinement. Second, we need to ramp up the
electrostatic interaction more carefully now. The following code gradually increases the
Bjerrum length to the target value of 1.0, and caps only the Lennard-Jones interactions
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between the particles. The latter can be done by switching on individual force capping,
and setting a force cap radius for the particle-particle interactions:
inter forcecap individual

for {set i 1} {$i < 10} {incr i} {

set rad [expr 1.0 - 0.5*$i/10.0]

set lb [expr 1.0 * $i / 10.0]

inter 0 0 lennard-jones $eps $sig $cut $shift 0 $rad

inter 1 0 lennard-jones $eps $sig $cut $shift 0 $rad

inter 1 1 lennard-jones $eps $sig $cut $shift 0 $rad

inter coulomb $lb mmm2d 1e-4

integrate $integ_steps

}

inter forcecap 0

inter coulomb 1.0 mmm2d 1e-4

Finally, when writing out, we should update the set of Tcl-variables to represent the
asymmetric box, and write out box_lxy and box_lz instead of just box_l.

Analysis

For a such a strongly confined system, the radially averaged distribution function is
inappropriate. Instead, it would be more interesting to study the distribution of the
particles along the slit width. ESPResSo does not provide such a function, however, we
can easily write one using the bin command, which simply allows to bin a set of values
given as a Tcl-list. Therefore, we first create the list of z-coordinates, and then bin them:

set data ""

for {set p 0} {$p <= [setmd max_part]} {incr p} {

lappend data [lindex [part $p pr pos] 2]

}

set rho [bin -linbins 0.5 [expr $box_lz + 0.5] $bins $data]

Here, bins is a variable that you should set to the required number of bins (20 should
be fine). Otherwise, this code can replace the analyze rdf command. The bin command
also allows to obtain the coordinates of the bins:

bin -linbins 0.5 [expr $box_lz + 0.5] $bins -binctrwdth

will return a list of the centers and widths of the bins, which can be used in analogy
to rlist in the previous analysis code. Of course, it would be interesting to study the
distribution of positive and negative charges separately; for this, you need to duplicate
the averaging code, and use two data sets to append the z-coordinates to, depending on
the particle type:

if {[part $p pr type] == 0} {

lappend data0 [lindex [part $p pr pos] 2]

} {

lappend data1 [lindex [part $p pr pos] 2]

}

The resulting distribution of charges is shown in Fig. 3, showing a layering effect of
the confinement on the charge distributions.
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Figure 4: Distribution of positive charges ρ+(z) (open squares) and of negative charges
ρ−(z) (open squares) under confinement along z. The two confining walls are
negatively charged, pushing away the negative charges.

Charging the walls

So far, the distributions of particles of type 0 and 1 are more or less the same, as one
would expect. However, we can change this by introducing charged walls. That is done
using the constrain plate command:

set sigma [expr -0.25*$n_part/($box_lxy*$box_lxy)]

constraint plate height 0 sigma $sigma

constraint plate height [expr $box_lz + 1.0] sigma $sigma

This adds two plates at the bottom and top of the simulation box. The charged
walls (the condensator plates) are necessarily perpendicular to the z-axis, since for all
electrostatics methods for 2d-periodic systems, the z-axis is the non-periodic one. Note
that this adds two walls with a total charge of n_part/2, which would make the over-
all system charged. To maintain charge neutrality, we simply choose only half of the
charges (i.e. 100) with altering charge as before, while the rest we simply choose all with
positive charge. For this system, you should obtain distributions as shown in Fig. 4.
The distribution of charges differs strongly between the two types of charges; while the
positive charges layer at the walls, the negative charges accumulate in the center of the
system.
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