
ESPResSo Tutorial

The Lattice Boltzmann Method in
ESPResSo: Polymer Diffusion and

Electroosmotic Flow

Stefan Kesselheim ∗ Georg Rempfer †

October 4, 2013
Institute for Computational Physics, Stuttgart University

E

E
_

_

_

_

_

_

_

_

_

_

+

x
y

z

∗kessel@icp.uni-stuttgart.de
†georg@icp.uni-stuttgart.de

1

Before you start:
With this tutorial you can get started using the Lattice-Boltzmann method for sci-
entific applications. We give a brief introduction about the theory and how to use
it ESPResSo. We have selected three interesting problems, for which LB can be
applied, but which are well understood. You can start with any of them.
The tutorial relatively long, and working through it carefully is work for at least a full
day. You can however get a glimpse of different aspects by starting to work on the
tasks.
Note: LB can not be used as a black box. It is unavoidable to spend time learning the
theory and gaining practical experience.

Contents

1 Introduction 3

2 The LBM in brief 4

3 The LB interface in ESPResSo 7

4 Drag force on objects 11

5 Polymer Diffusion 12

6 Electro-osmotic flow in a slit pore 16

2

1 Introduction

In this tutorial, you will learn basics about the Lattice Boltzmann Method (LBM) with special
focus on the application on soft matter simulations, or more precisely on how to apply it in
combination with molecular dynamics to take into account hydrodynamic solvent effects without
the need to introduce thousands of solvent particles.

The LBM – its theory as well as its applications – is still a very active field of research. After
almost 20 years of development there are many cases in which the LBM has proven to be fruitful,
in other cases the LBM is considered promising, and in some cases it has not been of any help.
We encourage you to contribute to the scientific discussion of the LBM because there is still a
lot that is unknown or only vaguely known about this fascinating method.

Tutorial Outline

This tutorial should enable you to start a scientific project applying the LB method with
ESPResSo. In the first part summarize a few basic ideas behind LB, and describe the inter-
face. In the second part we suggest three different classic examples, where hydrodynamics are
important. These are

• Hydrodynamic resistance of settling particles. We measure the drag force of single
particles and arrays of particles when sedimenting in solution.

• Polymer diffusion. We show that the diffusion of polymers is accelerated by hydrody-
namic interactions.

• Electroosmotic flow. We reproduce the flow pattern created by between charged walls
when an electric field is applied.

Notes on the ESPResSo version you will need

With Version 3.1 ESPResSo has learned GPU support for LB. We recommend however version
3.2, to have all features available. We absolutely recommend using the GPU code, as it is much
(100x) faster than the CPU code.

For the tutorial you will have to compile in the following features:
PARTIAL_PERIODIC, ELECTROSTATICS, EXTERNAL_FORCES, CONSTRAINTS,
LB_GPU, LB_BOUNDARIES_GPU, LENNARD_JONES.

All necessary files for this tutorial are located in the directory lb_tutorial/src.

3

2 The LBM in brief

Linearized Boltzmann equation

Here we want to repeat a few very basic facts about the LBM. You will find much better intro-
ductions in various books and articles, e.g. [1, 2]. It will however help clarifying our choice
of words and we will eventually say something about the implementation in ESPResSo. It is
very loosely written, with the goal that the reader understands basic concepts and how they are
implemented in ESPResSo.

The LBM essentially consists of solving a fully discretized version of the linearized Boltz-
mann equation. The Boltzmann equation describes the time evolution of the one particle distri-
bution function f (x, p, t), which is the probability to find a molecule in a phase space volume
dxdp at time t.The function f is normalized so that the integral over the whole phase space is
the total mass of the particles: ∫

f (x, p) dxdp = Nm,

where N denotes the particle number and m the particle mass. The quantity f(x, p) dxdp
corresponds to the mass of particles in this particular cell of the phase space, the population.

Discretization

The LBM discretizes the Boltzmann equation not only in real space (the lattice!) and time, but
also the velocity space is discretized. A surprisingly small number of velocities, in 3D usually
19, is sufficient to describe incompressible, viscous flow correctly. Mostly we will refer to
the three-dimensional model with a discrete set of 19 velocities, which is conventionally called
D3Q19. These velocities, ~ci, are chosen so that they correspond the movement from one lattice
node to another in one time step. A two step scheme is used to transport information through
the system: In the streaming step the particles (in terms of populations) are transported to the
cell where they corresponding velocity points to. In the collision step, the distribution functions
in each cell are relaxed towards the local thermodynamic equilibrium. This will be described in
more detail below.

The hydrodynamic fields, the density, the fluid momentum density, the pressure tensor can be
calculated straightforwardly from the populations: They correspond the to the moments of the
distribution function:

ρ =
∑

fi (1)

~j = ρ~u =
∑

fi~ci (2)

Παβ =
∑

fi~ci
α~ci

β (3)

Here the Greek indices denotes the cartesian axis and the Latin indices indicate the number in
the disrete velocity set. Note that the pressure tensor is symmetric. It is easy to see that these
equations are linear transformations of the fi and that they carry the most important information.
They are 10 independent variables, but this is not enough to store the full information of 19

4

Figure 1: The 19 velocity vectors ~ci for a D3Q19 lattice. From the central grid point, the velocity
vectors point towards all 18 nearest neighbours marked by filled circles. The 19th
velocity vector is the rest mode (zero velocity).

populations. Therefore 9 additional quantities are introduced. Together they form a different
basis set of the 19-dimensional population space, the modes space and the modes are denoted
by mi. The 9 extra modes are referred to as kinetic modes or ghost modes. It is possible to
explicitly write down the base transformation matrix, and its inverse and in the ESPResSo LBM
implementation this basis transformation is made for every cell in every LBM step. It is possible
to write a code that does not need this basis transformation, but it has been shown, that this only
costs 20% of the computational time and allows for larger flexibility.

The second step: collision

The second step is the collision part, where the actual physics happens. For the LBM it is as-
sumed that the collision process linearly relaxes the populations to the local equilibrium, thus
that it is a linear (=matrix) operator acting on the populations in each LB cell. It should conserve
the particle number and the momentum. At this point it is clear why the mode space is helpful.
A 19 dimensional matrix that conserves the first 4 modes (with the eigenvalue 1) is diagonal in
the first four rows and columns. Some struggling with lattice symmetries shows that four inde-
pendent variables are anough to characterize the linear relaxation process so that all symmetries
of the lattice are obeyed. Two of them are closely related to the shear and bulk viscosity of the
fluid, and two of them do not have a direct physical equivalent. They are just called relaxation
rates of the kinetic modes.

The equilibrium distribution to which the populations relax is obtained from maximizing the
information entropy

∑
fi log fi under the constraint that the density and velocity take their

particular instantaneous values.
In mode space the equilbrium distribution is calculated much from the local density and veloc-

5

ity. The kinetic modes 11-19 have the value 0 in equilibrium. The collision operator is diagonal
in mode space and has the form

m?
i = γi

(
mi −meq

i

)
+m

eq
i .

Here m?
i is the ith mode after the collision. In words we would say: Each mode is relaxed is

relaxed towards its equilibrium value with a relaxation rate γi. The conserved modes are not
relaxed, or, the corresponding relaxation parameter is one.

By symmetry consideration one finds that only four independent relaxation rates are allowed.
We summarize them here.

m?
i = γimi

γ1 = · · · = γ4 = 1

γ5 = γb

γ6 = · · · = γ10 = γs

γ11 = · · · = γ16 = γodd

γ17 = · · · = γ19 = γeven

To include hydrodynamic fluctuations of the fluid, random fluctuations are added to the non-
conserved modes 4 . . . 19 on every LB node so that the LB fluid temperature is well defined and
the corresponding fluctuation formula, according to the fluctuation dissipation theorem holds.
An extensive discussion of this topic is found in [3]

Particle coupling

Particles are coupled to the LB fluid with the force coupling: The fluid velocity at the position
of a a particle is, is calculated by a multilinear interpolation and a force is applied on the particle
that is proportional to the velocity difference between particle and fluid:

~FD = −γ (v − u) (4)

The opposite force is distributed on the surrounding LB nodes. Additionally a random force is
added to maintain a constant temperature, according to the fluctuation dissipation theorem.

6

v(t)

u(1,t) u(2,t)

u(3,t) u(4,t)

u(r,t)

Figure 2: The coupling scheme between fluid and particles is based on the interpolation of the
fluid velocity ~u from the grid nodes. This is done by linear interpolation. The differ-
ence between the actual particle velocity ~v(t) and the interpolated velocity ~u(~r, t) is
used in the momentum exchange of Equation 4.

3 The LB interface in ESPResSo

ESPResSo features two virtually independent implementations of LB. lbfluid
The LB lattice is a cubic lattice, with a lattice constant agrid that is the same in all spacial

directions. The chosen box length must be an integer multiple if agrid. The LB lattice is
shifted by 0.5 agrid in all directions: the node with integer coordinates (0, 0, 0) is located at
(0.5a, 0.5a, 0.5). The LB scheme and the MD scheme are not synchronized: In one LB time
step typically several MD steps are performed. This allows to speed up the simulations and is
adjusted with the parameter tau. The LB parameter tau must be an integer multiple of the MD
timestep.

Even if MD features are not used, a few MD parameters must be set, although they are ir-
relevant to the LB module. These is mainly skin, but also the MD timestep has to be set, as
the command integrate is used to propagate MD steps. LB steps are performed in regular
intervals.

ESPResSo has three main commands for the LB module: lbfluid, lbnode, and
lbboundary. lbfluid is mainly used to set up parameters and does everything that concerns
the whole fluid. lbnode involves readout and manipulation of single LB cells. lbboundary
allows to set boundaries, currently only the bounce back boundary method is implemented to
model no-slip walls. Additionally the command thermostat lb is used to set the tempera-
ture.

Important Notice: All commands of the LB interface use MD units. This is convenient, as
e.g. a particular viscosity can be set and the LB time step can be changed without altering the
viscosity. On the other hand this is a source of a plethora of mistakes: The LBM is only reliable

7

in a certain range of parameters (in LB units) and the unit conversion may take some of them far
out of this range. So note that you always have to assure that you are not messing with that!

One brief example: a certain velocity may be 10 in MD units. If the LB time step is 0.1 in
MD units, and the lattice constant is 1, then it corresponds to a velocity of 1 in LB units. This
is the maximum velocity of the discrete velocity set and therefore causes numerical instabilities
like negative populations.

The lbfluid command

The lbfluid command sets global parameters of the LBM. Every parameter is given in the
form lbfluid name value. All parameters except for gamma_odd and gamma_even
are given in MD units. All parameters except for ext_force accept one scalar floating point
argument.
dens The density of the fluid.
grid The lattice constant of the fluid. It is used to

determine the number of LB nodes per direction
from box_l. They have to be compatible.

visc The kinematic viscosity
tau The time step of LB. It has to be equal or larger

than the MD time step.
friction The friction coefficient γ for the coupling

scheme.
ext_force An external force applied to every node with

three components.
gamma_odd Relaxation parameter for the odd kinetic modes.
gamma_even Relaxation parameter for the even kinetic

modes.

A good starting point for an MD time step of 0.01 is the command line

l b f l u i d g r i d 1 . 0 dens 10 . v i s c . 1 t a u 0 . 0 1 f r i c t i o n 10 .

The lbnode command

The lbnode command allows to inspect and modify single LB nodes The general syntax is:

lbnode X Y Z command a rgumen t s

Note that the indexing in every direction starts with 0. The possible commands are:
print Print one or several quantities to the TCL inter-

face.
set Set one quantity to a particular value (can be a

vector)

8

For both commands you have to specify what quantity should be printed or modified. Print

allows the following arguments:

rho the density (scalar).
u the fluid velocity (three floats: ux, uy, uz)
pi the fluid velocity (six floats: Πxx, Πxy, Πyy,

Πxz , Πyz , Πzz)
pi_neq the nonequilbrium part of the pressure tensor,

components as above.
pop the 19 population (check the order from the

source code please).
Example: The line

puts [lbnode 0 0 0 p r i n t u]

prints the fluid velocity in node 0 0 0 to the screen. The command set allows to change the
density or fluid velocity in a single node. Setting the other quantities can easily be implemented.
Example:

puts [lbnode 0 0 0 s e t u 0 . 0 1 0 . 0 .]

The lbboundary command

The lbboundary allows to set boundary conditions for the LB fluid. In general periodic
boundary conditions are applied in all directions, and only if LB boundaries are constructed
finite geometries are used. This part of the LB implementation is still experimental, so please
tell us about your experience with it. In general even the simple case of no-slip boundary is still
an important research topic in the lb community, and in combination with point particle coupling
not much experience exists. This means: Do research on that topic, play around with parameters
and find out what happens.

The lbboundary command is supposed to resemble exactly the constraint command
of ESPResSo: Just replace the keyword constraint with the word lbboundary and
ESPResSo will create walls with the same shape as the corresponding constraint. Example:
The commands

l b b o u n d a r y w a l l d i s t 1 . normal 1 . 0 . 0 .
l b b o u n d a r y w a l l d i s t −9. normal −1. 0 . 0 .

create a channel with walls parallel to the yz plane with width 8.
Currently only the so called link bounce back method is implemented, where the effective

hydrodynamic boundary is located midway between two nodes. This is the simplest and yet a

9

rather effective approach for boundary implementation. The lbboundary command checks
for every LB node if it is inside the constraint or outside and flags it as a boundary node or not.
This means if the lattice constant is set to 1, the above command yields exactly the same as this:

l b b o u n d a r y w a l l 0 . 1 0 0 normal 1 . 0 . 0 .
l b b o u n d a r y w a l l −8.1 0 0 normal −1. 0 . 0 .

This has to be kept in mind, when you use the LB boundaries.
Currently only the shapes wall, sphere and cylinder are implemented, but to implement others

is straightforward. If you need them, please let us know.

10

4 Drag force on objects

As a first test, we measure the drag force on different objects in a simulation box. Und low
Reynolds number conditions, a object with velocity ~v experiences a drag force ~FD proportional
to the velocity:

~FD = −γ~v,

where γ is denoted the friction coefficient. In general, it is a tensor, thus the drag force is not
always parallel to the velocity. For spherical particles, the drag force is given by Stokes’ law:

~FD = −6πηa~v,

where a is the radius of the sphere.
In this task, you measure the drag force on falling objects with LB and ESPResSo. In the

sample script lb_stokes_force.tcl a spherical object at rest is centered in a square
channel. Bounce back boundary conditions are assumed on the sphere. On the channel boundary
the velocity is fixed, by using appropriate boundary conditions. Within a few 100 or 1000
integration step a steady state develops and the force on the sphere converges.

Radius dependence of the drag force

Measure the drag force for three different input radii of the sphere. How good is the agreement
with Stokes’ law? Calculate an effective radius from Stokes’ law and the drag force measured
in the simulation. Is there a clear relation to the input radius?
Remember how the bounce back boundary conditions work, and how good spheres can be rep-
resented by them.

Visualization of the flow field

The script produces vtk files of the flow field as output. Visualize the flow field with
paraview. Open paraview by typing it on the command line. Make sure you are in the
folder where the files are located. Do the following steps:

• Click in the menu File, Open...

• Choose the files with the flow field fluid...vtk

• Click Apply

• Add a stream tracer filter Filters, Alphabetical, Stream Tracer

• Change the seed type from point source to high resolution line source

• Click Apply

• Rotate the display to see the stream lines.

• Use the play button in the bar below the menu bar to show the time evolution.

11

System size dependence

Measure the drag force for a fixed radius varying the system size. Does the drag force increase
or decrease with the systems size? Can you find a qualitative explanation?

Dimensionless form of the Stokes’ equation

The flow field is governed, under small applied velocities, by the time-dependent Stokes equa-
tion:

ρ
∂

∂t
~u+ η∇2~u−∇~p = 0,

where the fluid velocity on the boundaries is given as boundary condition. We want to answer
the question: On what time scale does the flow field converge to a stationary state? The result
is a function of the viscosity, the system size and the density of the fluid. Interestingly it does
not depend on the magnitude of ~v. You can try to find the answer by playing with the simulation
parameters: Vary the viscosity, the density and the system size, and monitor, how quickly the
force converges.

To answer that question by theory it is necessary to express the Stokes’ equation in dimen-
sionless form. To obtain it, express all length scales in units of the system size l and all times in
units of τ , the time scale we want to obtain. Partial derivatives transform as:

∂

∂x
=

1

l

∂

∂ (x/l)

∂

∂t
=

1

τ

∂

∂ (t/τ)

5 Polymer Diffusion

In these exercises we want to use the LBM-MD-Hybrid to reproduce a classic result of polymer
physics: The dependence of the diffusion coefficient of a polymer on its chain length. If no
hydrodynamic interactions are present, one expects a scaling law D ∝ N−1 and if they are
present, a scaling law D ∝ N−ν is expected. Here ν is the Flory exponent that plays a very
prominent role in polymer physics. It has a value of ∼ 3/5 in good solvent conditions in 3D.
Discussions of these scaling laws can be found in polymer physics textbooks like [4–6].

The reason for the different scaling law is the following: When being transported, every
monomer creates a flow field that follows the direction of its motion. This flow field makes it
easier for other monomers to follow its motion. This makes a polymer long enough diffuse more
like compact object including the fluid inside it, although it does not have clear boundaries. It
can be shown that its motion can be described by its hydrodynamic radius. It is defined as:

〈 1

Rh
〉 = 〈 1

N2

∑
i 6=j

1

|ri − rj |
〉 (5)

This hydrodynamic radius exhibits the scaling law Rh ∝ Nν and the diffusion coefficient of
long polymer is proportional to its inverse. For shorter polymers there is a transition region. It

12

can be described by the Kirkwood-Zimm model:

D =
D0

N
+
kBT

6πη
〈 1

Rh
〉 (6)

Here D0 is the monomer diffusion coefficient and η the viscosity of the fluid. For a finite system
size the second part of the diffusion is subject of a 1/L finite size effect, because hydrodynamic
interactions are proportional to the inverse distance and thus long ranged. It can be taken into
account by a correction:

D =
D0

N
+
kBT

6πη
〈 1

Rh
〉
(

1− 〈Rh
L
〉
)

(7)

It is quite difficult to prove this formula with good accuracy. It will need quite some computer
time and a careful analysis. So please don’t be too disappointed if you don’t manage to do so.

We want to determine the diffusion coefficient from the mean square distance that a particle
travels in the time t. For large t it is be proportional to the time and the diffusion coefficient
occurs as prefactor:

∂〈r2 (t)〉
∂t

= 2dD. (8)

Here d denotes the dimensionality of the system, in our case 3. This equation can be found
in virtually any simulation textbook, like [7]. We will therefore set up a polymer in an LB
fluid, simulate for an appropriate amount of time, calculate the mean square displacement as a
function of time and obtain the diffusion coefficient from a linear fit. However we make a couple
of steps in between and divide the full problem into subproblems that allow to (hopefully) fully
understand the process.

5.1 Step 1: Diffusion of a single particle

Our first step is to investigate the diffusion of a single particle that is coupled to an LB fluid by
the point coupling method. Investigate the script single_particle_diffusion.tcl .

In this script an LB fluid and a single particle are created and thermalized. The random forces
on the particle and within the LB fluid will cause the particle to move, and its position is recorded
in the file pos.dat . Run the simulation script for at least 10000 steps and use the helper script
msd.pl to calculate the MSD:

. / m s d . p l p o s . d a t

Use gnuplot to investigate the curve:

p l o t " p o s . d a t "
p l o t " m s d _ p o s . d a t "

What is different for short times than for long times? Can you give an explanation for the
parabolic shape at short times? Use a linear fit to determine the diffusion coefficient:

f (x) =a∗x+b
f i t [1 :] f (x) ‘ ‘ msd_pos .da t ’ ’ v i a a , b

13

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ea

n
sq

ua
re

 d
is

pl
ac

em
en

t i
n

M
D

 u
ni

ts

time in MD units

Mean square displacement

Figure 3: Mean square displacement of a single particle

The square brackets in the fit command tell gnuplot only to use the range right of x = 1 for
the fit.

The file energy.dat contains the kinetic energy of the particle as a function of the elapsed
simulation time. Investigate it, by plotting it with gnuplot. Calculate the average value of the
kinetic energy e.g. by fitting a constant function with gnuplot. What value would you expect
from a working thermostat?

Run the simulation again with different values for the friction coefficient, e.g. 1. 2. 4. 10.
Calculate the diffusion coefficient for all cases and use gnuplot to make a plot of D as a function
of γ. What do you observe? The tiny helper script fit_lin.sh (with argument msd_pos.dat)
will help you with that. It contains a (quite ugly) gnuplot one-liner that does the fitting and just
returns the slope. The fit is performed in the range 5 to 40 that has proved to work good for runs
of ∼ 100000 steps. You have to modify the script to change that range. Is there any difference
between the friction coefficient that you put in, and the diffusion coefficient you obtain?

5.2 Step 2: Diffusion of a polymer

One of the typical applications of ESPResSo is the simulation of polymer chains with a bead-
spring-model. For this we need a repulsive interaction between all beads, for which one usually
takes a shifted and truncated Lennard-Jones (so called Weeks-Chandler-Anderson) interaction,
and additionally a bonded interaction between adjacent beads to hold the polymer together. You
have already learned that the command

14

i n t e r 0 0 l e n n a r d− j o n e s 1 . 1 . 1 . 1 2 5 0 . 2 5 0 .

creates a Lennard-Jones interaction with ε = 1. σ = 1. rcut = 1.125 and εshift = 0.25
between particles of type 0, the desired repulsive interaction. The command

i n t e r 0 FENE 7 . 2 .

creates a FENE (see ESPResSo manual for the details) bond interaction. Still ESPResSo does
not know between which beads this interaction should be applied. This can be either be specified
explicitly or done with the polymer command. This creates a given number of beads, links them
with the given bonded interaction and places them following a certain algorithm. We will use
the pruned self-avoiding walk: The monomers are set according to a pruned self-avoiding walk
(in 3D) with a fixed distance between adjacent bead positions. The syntax is:

polymer $N_polymers $N_monomers 1 . 0 t y p e s 0 mode PSAW bond 0

Using a random walk to create a polymer causes trouble: The random walk may cross it-
self (or closely approach itself) and the LJ potential is very steep. This would raise the po-
tential energy enormously and would make the monomers shoot through the simulation box.
The pruned self-avoiding walk should prevent that, but to be sure we perform some MD steps
with a capped LJ potential, this means forces above a certain threshold will be set to the thresh-
old in order to prevent the system from exploding. To see how this is done, look at the script
polymer_diffusion.tcl . It contains a quite long warmup command so that also longer polymers

are possible. You can probably make it shorter. Also the runtime can be reduced. You should
find out about necessary number of steps by yourself.

It is called in the following way:

/ p a t h / t o / E s p r e s s o p o l y m e r _ d i f f u s i o n $N_monomers

This allows to quickly change the number of monomers without editing the script. Change
the variable vmd_output to yes to look at the diffusing polymer. For the warmup a Langevin
thermostat is used to keep the temperature constant. You will have to add the LB command by
yourself.

Run the script with a polymer of chain length 16 and look at the output files which are identical
to the output files of the single_particle_diffusion.tcl script. Use msd.pl and fit_lin.sh to
calculate the diffusion coefficient as a function of the chain length. If you are familiar with
shell scripting, write a script that automatically changes the chain length. Additionally the script
writes the file rh.dat that contains the instantaneous value of the hydrodynamic radius. The
script average.sh allows to calculate its average value.

With the help of the single particle script now add the LB fluid and calculate the MSD again.
What do you observe? Do not forget to remove the Langevin thermostat after the warmup. This
can be done with the command

thermos ta t o f f

Can you confirm the behaviour of eq. 7 when a LB fluid is added? Not very easy to answer
is the question of the statistical accuracy of the data. A good way is to run the same simulation

15

several times so that it produced statistically independent data and then calculate the standard
deviation of the mean, like in lab experiments.

To check the Kirkwood-Zimm formula (eq. 7) we have used shell scripts of the following
type:

n= " 10 20 30 40 50 60 80 90 100 "
f o r i i n $n ; do

mkdir $ i
cd $ i
~ / e s p r e s s o− g i t / e s p r e s s o / b i n / E s p r e s s o . . / p o l y m e r _ d i f f u s i o n . t c l $ i
cd . .

done

n= " 10 20 30 40 50 60 80 90 100 "
f o r i i n $n ; do

cd $ i
. . / . . / s r c / m s d . p l p o s . d a t > / dev / n u l l
. . / . . / s r c / a c f _ c o l u m n w i s e . p l v . d a t > / dev / n u l l
a= ‘ . . / . . / s r c / f i t _ l i n . s h msd_pos .da t ‘
b= ‘ . . / . . / s r c / a v e r a g e . s h r h . d a t ‘
echo " $ i $a $b "
cd . .

done

Maybe this is a helpful starting point for you.

6 Electro-osmotic flow in a slit pore

Electro-osmotic flow (EOF) is the motion of water (or another liquid) induced by an electric
field. It can occur e.g. in porous media, in synthetic capillaries and in vicinity of charged sur-
faces. Charged objects in an electrolyte solution attract ions of one species and repel ions of the
other species, which gives rise to a net charge density in its neighbourhood. If an external elec-
tric field is applied, these ions are accelerated in the direction of the electric field (or oppositely
if negatively charged) which causes also an acceleration of the surrounding water. In regions
with zero net charge, the force on the fluid exerted by both ion species cancels, thus charged
interfaces are necessary.

Conceptually electro-osmotic flow is closely related to electrophoresis, where a charged object
(e.g. a polyelectrolyte) is moved by an electric field and the surrounding counterions create a
flow field in the opposite direction.

In this exercise the electrokinetic equations, that allow for a classical description of the phe-
nomenon, are introduced and you will learn how to simulate this effect with ESPResSo with the
LBM. The special case of planar charged walls in the regime of low salt concentration can be
solved analytically and you will see that we can reproduce the classical results quite well, but
you will also learn about the deficiencies of both approaches. We will concentrate on the case
where only one species of ions (counterions) is present. The generalization to multiple species
however is straightforward.

16

6.1 The electrokinetic equations

We want to describe a system in which ions can diffuse under an applied field embedded in a
fluid. We therefore assume that a linear convection diffusion equation is valid:

~j = −D∇ρ− ρ (µze∇Φ + ~u) ,

Here ~j corresponds to the ion flux density, D corresponds to the diffusion coefficient of the
ions, c to their concentration, µ to their (electrophoretic) mobility, ~E to the local electric field
and ~u to the fluid velocity.

We assume that fluid fulfills the incompressible Navier-Stokes equation. The term ρze ~E
appears as source term due to the acceleration of the fluid caused by the ions. In the limit of
small Reynolds numbers we can leave out the convection term and reduce to the Stokes equation.

η∆~u = ~∇p− ρze ~E (9)

Here we have assumed that the system reaches a steady state and therefore the time derivative
was dropped. The incompressibility (=continuity) equation holds:

~∇ · ~u = 0 (10)

For the electrostatic potential we make the following mean field approximation: The electric
potential is caused not by single ions, but their density. This means every ion is not exposed to
the instantaneous electrostatic potential but the smeared out potential of all other ions. Then the
Poisson equation reads as:

∆Φ = −ρze/ε (11)

We will later see that this approximation is avoided in a molecular dynamics simulation of
explicit ions.

This set of coupled partial differential equations is called the electrokinetic equations. In gen-
eral the solution is difficult, but the planar geometry will allow us to find an analytical solution.

6.2 The slit pore geometry

We want to investigate the simplest case where EOF occurs: The flow of water through the
volume between two parallel charged planes in the xy-plane. We assume that the planes are
infinitely extended in the directions parallel to the plane and that the number of ions exactly
cancels the charge of both planes and that the external electric field is exerted in x direction and
that the position of the planes is at x = ±l/2.

We assume that all quantities to not change in y and z directions because of translational
invariance (the great advantage of our geometry) and drop all derivatives with respect to it. The
only exception is the electrostatic potential which we assume to decay linearly in y-direction
due to an external field.

Due to continuity in x-direction and translational invariance resp. symmetry the fluid velocity
and flux density in x direction must be zero and we can write down the Poisson equation and the

17

diffusion equation in x direction:

∂2xΦ = −ρze/ε (12)

0 = −D∂xρ− ρµze∂xΦ (13)

This significantly smaller set of equations corresponds to the 1D Poisson-Boltzmann equation.
It can be solved using the Ansatz:

ρ = c exp

(
− zeΦ
kBT

)
(14)

Then one obtains a single ordinary differential equation that has to be solved under the boundary
condition that the walls bear a charge density σ, thus electric field jumps at x = ±l/2. This
yields:

ρ(y) =
εC2

2kBT
· 1

cos2
(

qC
2kBT

· y
) , ∣∣∣∣ qC

2kBT
· y
∣∣∣∣ < π

2
.

Here the parameter C has to fulfill the following transcendental equation:

C · tan

(
qd

4kBT
· C
)

= −σ
ε
, 0 ≤ C <

πkBT

2d|q|
.

Now this charge density can be included in the Stokes equation and one can obtain the fluid
profile from integrating twice and choosing the integration constanst so that ~u = 0 is fulfilled at
x = ±l/2:

uy(x) =
2EεkBT

ηq
·
{

log

[
cos

(
qC

2kBT
· x
)]
− log

[
cos

(
dqC

4kBT

)]}
,

Obtaining the particle flux profile is the easy:

jy/ρ = µE + uy. (15)

Before simulating the full system, we make two steps in between, because we need to know
how to have walls in an ESPResSo simulation. First we want to simulate Poisseuille flow,
the famous parabolic flow profile, in a slit geometry and then we want to simulation particles
between two walls. Finally we combine it all to simulate the full system.

6.3 Poiseuille flow ESPResSo

Poisseuille flow is the flow through a pipe or (in our case) a slit under a homogenous force
density, e.g. gravity. In the limit of small Reynolds numbers, the flow can be described with the
Stokes equation. We assume the slit being infinitely extended in y and z direction and an force
density f on the fluid in y direction. No slip-boundary conditions (i.e. ~u = 0) are located at

18

z = ±l/2. Assuming invariance in y and z direction and a steady state the Stokes equation is
simplified to:

η∂2xuy = f (16)

where f denotes the force density and η the dynamic viscosity. This can be integrated twice and
the integration constants are chosen so that uy = 0 at z = ±l/2 and we obtain:

uy =
f

2η

(
l2/4− x2

)
(17)

With that knowledge investigate the script poisseuille.tcl. Note the lbboundary command. Two
walls are created with normal vectors (±1, 0, 0). An external force is applied to every node.
After 1000 LB updates the steady state should be reached.

Task: Write a loop that prints the fluid velocity at the nodes (0,0,0) to (16,0,0) and the node
position to a file. Use the lbnode command for that. Hint: to write to a file, first open a file and
then use the puts command to write into it. Do not forget to close the file afterwards. Example:

s e t o f i l e [open " f i l e . t x t " "w"]
puts $ o f i l e " h e l l o wor ld ! "
c l o s e $ o f i l e

Use gnuplot to fit a parabolic profile. Can you confirm the analytic solution?

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 2 4 6 8 10 12 14 16

fl
ui

d
ve

lo
ci

ty
 (

M
D

 u
ni

ts
)

position in nm

Velocity Profile

Figure 4: Poisseuille Flow in a slit Geometry.

19

6.4 Constraints in ESPResSo

The constraint command of ESPResSo creates walls in the system. They have a particular
“particle” type and interact with the particles present in the system with the potential defined
between them. This means the distance of every particle to the constraint is calculated and used
as the distance in the interaction potential.

To set up a planar channel like the LB channel before one would use the commands:

c o n s t r a i n t w a l l d i s t 0 . 5 normal 1 . 0 . 0 . type 1
c o n s t r a i n t w a l l d i s t −8.5 normal −1. 0 . 0 . type 1
i n t e r 0 1 l e n n a r d− j o n e s 1 . 1 . 1 . 2 2 5 0 . 2 5 0

This wall is felt only by particles of type 0 and has an effective width of 6, as the potential goes
steeply up at positions x = 1.5 and x = 7.5.

The syntax of the wall constraint looks weird at first, because a negative distance from the
origin (first argument) is given, but the idea is that this distance times the normal vector is a
point of the plane. For inclined walls this syntax is more easy to understand.

ESPResSo complains every time a particle penetrates the wall, as it does not expect the par-
ticles to do so. This complaint should be taken serious, because that means the particle has
overcome LJ potential barrier, which is physically impossible. This usually tells you to reduce
the applied time step.

To set up a system we have, of course to make sure, that our initial configuration obeys the
constraints. The easiest thing is to generate particle particle positions randomly and check if
it obeys the constraint. If not we repeat this process for every particle until a configuration is
found, that is within the allowed range. Look at the script boundaries.tcl and see how that is
solved. What does the script do?

6.5 Simulating EOF in ESPResSo

The last thing that is missing for the simulation of EOF is how to create a charged wall. This
can be done with particles, using the fix command. The command

part 0 pos 1 . 1 . 1 . q 1 . f i x 1 1 1

create a particle at the position (1, 1, 1) with charge 1 that is fixed in all the spacial dimensions.
In eof.tcl two walls are created. Now use the material from the other two scripts to run the

final system. Our we want to obtain a 10 Nanometer wide channel centered x = 7.5

1. Create constraints at x = 1.5 and x = 13.5 and create a particle-wall interaction. How
can you assure that the particles creating the wall charges are not affected by interaction
potential.

2. Use the particle creation method from boundaries.tcl to create particles in the system.
Create a repulsive potential between them.

3. Charge the particles so that the overall system is neutral.

4. Add an electrostatic interaction with a Bjerrum length of 0.7 (the room temperature Bjer-
rum length of water in nanometer).

20

5. First do not exert an external force on the particles. Use a Langevin thermostat to bring
the system to equilibrium. It will take some time for the ions to move towards the charged
walls. You can use vmd to look see the process.

6. Use the density profile method from boundaries.tcl to determine the ion concentration
profile. How many samples do you need to get a reasonable concentration profile.

7. Plot the concentration profile with gnuplot. Compare with the the Poisson-Boltzmann
result.

8. Introduce an LB fluid with planar walls boundaries at 2.5 and 12.5. Do not forget to
remove the external force if you copy&paste from poisseuille.tcl .

9. Add an external force of 0.1 to all particles that do not form the charged wall in y-direction.
Now run the system for enough time steps to get a good flux and velocity profile.

10. Finally calculate the velocity profile. You will have to average over several steps. Keep
in mind that number crunching with tcl is slow and that you will not need to average over
too many samples.

11. Compare the flux and velocity profiles with the result from theory. Do they agree?

12. Now increase the charge density on the walls. Can you observe differences between theory
and Computer simulations? They will likely be caused by the fact, that MD simulations
of explicit ions automatically take into account ion correlations and the effect of the finite
size of ions.

Following this list should in principle enable you to simulate the system. However we have
figured out that quite some traps are on the way to the full system. You might have to make
warmup steps in between, play with the time step and so on until your simulation script is
really stable. If something happens, make sure you check all the stages in between, or make
simplifications e.g. disabling the electrostatic interactions. This is however part of the process
to learn ESPResSo. If it takes you some time, do not be disappointed, but consider it a part of
your learning curve.

References

[1] S Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press,
Oxford, 2001.

[2] B. Dünweg and A. J. C. Ladd. Advanced Computer Simulation Approaches for Soft Matter
Sciences III, chapter II, pages 89–166. Springer, 2009.

[3] B. Dünweg, U. Schiller, and A.J.C. Ladd. Statistical mechanics of the fluctuating lattice-
boltzmann equation. Phys. Rev. E, 76:36704, 2007.

[4] P. G. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca,
NY, 1979.

21

[5] M. Doi. Introduction do Polymer Physics. Clarendon Press, Oxford, 1996.

[6] Michael Rubinstein and Ralph H. Colby. Polymer Physics. Oxford University Press, Oxford,
UK, 2003.

[7] Daan Frenkel and Berend Smit. Understanding Molecular Simulation. Academic Press,
San Diego, second edition, 2002.

22

	Introduction
	The LBM in brief
	The LB interface in ESPResSo
	Drag force on objects
	Polymer Diffusion
	Electro-osmotic flow in a slit pore

