Coarse-graining using the relative entropy method in VOTCA

Sikandar Y. Mashayak

Coarse-grained model to predict the structure of confined water

Relative entropy is a generic systematic CG method. It can be used effectively to optimize structure-based CG potentials.

Main objective of systematic coarse-graining is to mimic finer-level system.

CG should mimic AA

$$P_{\rm AA}\left(M\left(r\right)\right) = P_{\rm CG}\left(R\right)$$

Relative entropy is a metric of an error between AA and CG configurational probabilities.

$$S_{\text{rel}} = \sum_{i} p_{\text{AA}}(r_i) \ln\left(\frac{p_{\text{AA}}(r_i)}{p_{\text{CG}}\left(M(r_i)\right)}\right) + S_{\text{map}}$$
$$S_{\text{rel}} \ge 0$$

In canonical ensemble

$$S_{\rm rel} = \beta \langle U_{\rm CG} - U_{\rm AA} \rangle_{\rm AA} - \beta (A_{\rm CG} - A_{\rm AA}) + S_{\rm map}$$

Shell, JCP (2008); Chaimovich and Shell, JCP (2011)

Minimize relative entropy to optimize CG potentials.

CG interaction function:

$$u_{\rm CG}\left(\lambda_1,\lambda_2,\ldots,\lambda_n\right)$$

Minimize S_{rel} : $\frac{\partial S_{\text{rel}}}{\partial \lambda} = 0$

Newton-Raphson update:

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k - \boldsymbol{\chi} \mathbf{H}^{-1} \cdot \nabla_{\boldsymbol{\lambda}} S_{\text{rel}}$$

Evaluation of **H** and ∇S_{rel} requires only the derivatives of U_{CG} w. r. t. λ

$$\nabla_{\lambda} S_{\rm rel} = \beta \left\langle \frac{\partial U_{\rm CG}}{\partial \lambda} \right\rangle_{\rm AA} - \beta \left\langle \frac{\partial U_{\rm CG}}{\partial \lambda} \right\rangle_{\rm CG}$$

$$H_{ij} = \beta \left\langle \frac{\partial^2 U_{CG}}{\partial \lambda_i \partial \lambda_j} \right\rangle_{AA} - \beta \left\langle \frac{\partial^2 U_{CG}}{\partial \lambda_i \partial \lambda_j} \right\rangle_{CG} + \beta^2 \left\langle \frac{\partial U_{CG}}{\partial \lambda_i} \frac{\partial U_{CG}}{\partial \lambda_j} \right\rangle_{CG} - \beta^2 \left\langle \frac{\partial U_{CG}}{\partial \lambda_i} \right\rangle_{CG} \left\langle \frac{\partial U_{CG}}{\partial \lambda_j} \right\rangle_{CG}$$

Equivalence of relative entropy minimization with other coarse-graining system:

Structure: IBI / IMC

$$\frac{\delta S_{\rm rel}}{\delta u_{\rm CG, \, pair}(R)} = 0$$

$$g_{\rm AA}(R) = g_{\rm CG}(R)$$

Forces: FM

 $\frac{\delta S_{\rm rel}}{\delta U_{\rm CG}} = 0$

$$U_{\rm CG} = {\rm PMF}_{\rm AA}$$

$$\left\langle f \right\rangle_{\rm AA} = f_{\rm CG}$$

Chaimovich and Shell, JCP (2011); Rudzinski and Noid, JCP (2011)

Algorithm: Relative entropy minimization in VOTCA

Coarse-graining SPC/E bulk water:

$$T = 300 \text{ K}$$
$$\rho = 1.0 \text{ g/cm}^3$$
$$r_{\text{cut}} = 0.9 \text{ nm}$$
$$\Delta r = 0.02 \text{ nm}$$

Coarse-graining SPC/E bulk water:

Coarse-graining water-methanol mixture:

SPC/E water + OPLS methanol

	Ι	II	III
number of H_2O	3752	2000	248
number of MeOH	248	2000	3752
X_m	0.062	0.5	0.938
$ ho {\rm g/cm^3}$	0.97	0.885	0.80

CG water + CG methanol

ME-ME:

 $r_{\rm cut} = 1.32$, $\Delta r = 0.02$ nm

ME-WT:

 $r_{\rm cut} = 1.32$, $\Delta r = 0.02$ nm

WT-WT:

 $r_{\rm cut} = 1.00$, $\Delta r = 0.01$ nm

Coarse-graining water-methanol mixture: $X_m = 0.062$

Coarse-graining water-methanol mixture: $X_m = 0.5$

15

Coarse-graining water-methanol mixture: $X_m = 0.938$

16

Coarse-graining water in graphene slit channels:

State	T [K]	$\rho~[{\rm gm/cm^3}]$
I	298	1.0
II	328	0.985
III	400	0.935
IV	523	0.8
V	673	0.66

$r_{\rm cut}$ =	=1.0 1	nm
$\Delta r =$	= 0.02	2 nm

S. Y. Mashayak and Aluru N. R., JCP (2012)

Transferability / scaling of CG potentials of water confined in graphene slit channels.

2-point linear interpolation

$$u(r,T) = C_{\rm L} \times u(r,T_{\rm L}) + C_{\rm U} \times u(r,T_{\rm U})$$

$$C_{\rm L} = \frac{T_{\rm U} - T}{T_{\rm U} - T_{\rm L}}$$
 For $T = 310$ K, $T_{\rm L} = 298$ and $T_{\rm U} = 328$ K
$$C_{\rm U} = \frac{T - T_{\rm L}}{T_{\rm U} - T_{\rm L}}$$
 For $T = 473$ K, $T_{\rm L} = 400$ and $T_{\rm U} = 523$ K

S. Y. Mashayak and Aluru N. R., JCP (2012)

S. Y. Mashayak and Aluru N. R., JCP (2012)

Conclusions

- 1. Relative entropy is a generic systematic CG method.
- 2. It can be used effectively to optimize structure-based CG potentials.
- 3. Structure-reproducing CG potentials for:
 - 1. SPC/E bulk water: RDF
 - 2. Water-methanol mixtures: RDF
 - 3. Water in graphene channels: Local density profiles

Thank you for listening!

Acknowledgements:

- Prof. N. R. Aluru (Adviser)
- Materials Computation Center, UIUC.
- ESSPResSo workshop organizers.
- Christoph Junghans
- Victor Ruehle

Coarse-graining using the relative entropy method in VOTCA

Sikandar Y. Mashayak

Uniform cubic B-spline functional form

200

 $\Delta r = \frac{R_{\text{cut}}}{n-1}, \quad r_j \le r < r_{j+1}, \quad t = \frac{r-r_j}{\Delta r}$