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Recent and future developments in the VOTCA

package

Christoph Junghans

July 24, 2013

Coarse-graining is a systematic way of reducing the number of degrees of
freedom used to represent a system of interest. The Versatile Object-oriented
Toolkit for Coarse-graining Applications (VOTCA) provides a uniform interface
to commonly used coarse-graining techniques such as iterative Boltzmann in-
version, force-matching, and inverse Monte Carlo. Further, it provides a flexible
modular platform for the further development of new coarse-graining techniques.

Recently two new methods for coarse-graining have been added to the pack-
age and were tested on SPC/E water and methanol-water mixtures. We will
discuss these results in comparison to earlier structure-based studies, but also
talk about the development of a non-structure-based model.

Finally, we will discuss features for the upcoming release including interfaces
to more simulation packages Additionally, we will debate how to make the de-
velopment process more adapted to the distributed developer team and, at the
same time, allow for better testing to guarantee code quality.
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Introduction

Coarse-graining is an essential
part of multi-scale simulations!

Reduces number of degrees
of freedom

Enhances accessible range of
time- and length-scales

Links atomistic and
coarse-grained
representations
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Introduction

Systematic Coarse-Graining

Is there a force-field for the coarse-grained model which reproduces
a certain property?

Structure (e.g. bond distribution or two-body correlations):

(Iterative) Boltzmann inversion
Inverse “Monte Carlo”
Relative Entropy Method

Forces → Force matching (multi-body PMF)

Free energy (MARTINI force-field)

Further properties:

General → Optimization

Pressure → Pressure correction
Diffusion → Thermostat (friction constant fitting)
Kirkwood-Buff Integrals → Ramp correction1

1Ganguly et al., JCTC 8, 1802 (2012)
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Introduction
VOTCA Framework

Consistent implementation of most of these methods
→ Allow for direct comparison

Platform for the implementation of new methods

Integrate existing sampling programs (e.g. MD codes)

Parts of VOTCA2- www.votca.org

Mapping engine

Parallel analysis framework

Automated iterative coarse-graining

Charge transport modules

Ohloh: 12 Person Years / 49.5k Lines / $ 647.5K

15 Developers

Packages in Fedora, OpenSuse, Gentoo
2JCTC 5, 3211 (2009) & Macromol. Theo. Simul. 20, 472 (2011)
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Introduction
VOTCA Team

Core developers

Christoph Junghans
Victor Rühle

Implementations

Sebastian Fritsch interface to AdResS
Mara Jochum SIMPLEX algorithm
Konstantin Koschke parallel analysis engine
Alexander Lukyanov force-matching
Sikandar Mashayak relative entropy method
Tristan Bereau orig. interface to ESPResSo
Dominic Röhm interface to ESPResSo
Louis Vernon interface to LAMMPS
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Kirkwood-Buff Models
Introduction

Find a coarse-grained model that reproduces the Kirkwood-Buff
Integrals:

Gij = 4π

∫

∞

0
[gµVT

ij (r)− 1]r2 dr

Motivation

Describes salting-in/salting-out of Biomolecules on a
coarse-grained level:

fcc =

(

∂ ln γc
∂ ln ρc

)

p,T

= −
ρc (Gcc −Gcw )

1 + ρc (Gcc −Gcw )
,

kBT ln γc : co-solvent solvation free energy
γc : co-solvent molar scale activity coefficient
ρc : co-solvent number density

Assumption: large systems (gµVT ≈ gNVT )
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Kirkwood-Buff Models
Aqueous Urea Mixture

Algorithms

Infinitely long iterative
Boltzmann inversion → fails

∆Uij(r) = kBT ln
gij(r)

gRef(r)

Ramp correction 3
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Problem: A is difficult to determine

3Ganguly et al., JCTC 8, 1802 (2012)
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Kirkwood-Buff Models
Aqueous Urea Mixture
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Kirkwood-Buff Models
Benzene in Water
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Kirkwood-Buff Models
Conclusion

What did we learn?

Iterative Boltzmann inversion alone is not enough

Transferable potentials over different concentrations

Useful method to develop models to study salting-in and
salting-out

Open questions:

Are there less arbitrary ways of correcting?

Is it possible to incorporate the correction in an inversion
scheme?
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Targeted Coarse-Graining
Introduction

Find a coarse-grained model, which reproduces other
non-structural related property.

Reformulation

Use n (∼5000) input parameters (potential tables) to generate m

output parameters (properties measured in the MD simulation)
and rank their quality.

The problem is overdetermined → use ∼10 essential
parameters

Equivalent to a standard optimization problem

Minimization would be possible if all ∂input/∂output exist
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Targeted Coarse-Graining
Example: Water
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Potentials should have 2 minima.
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Targeted Coarse-Graining
Example: Water

Center of mass mapping

CKD (= WCA + cos2

attraction) + Gaussian (6
parameters)4

Optimize parameters with
Nelder-Mead method
(Simplex)5
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3Idea: M. Jochum, Phd Thesis
4Shinoda et al., Mol. Sim. 33, 27 (2007)
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Targeted Coarse-Graining
Example: Water

What about the pressure?

Can easily be incorporated

Objective (penalty) function
needs modification
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Targeted Coarse-Graining
Example: Water

What about the mapping?

~R =
∑

i

λi~ri

with
∑

i

λi = 1

Can easily be incorporated

Adds 1 extra parameter for
symmetric mappings

Objective (penalty) function
needs no modification

Reference rdf changes
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Targeted Coarse-Graining
Conclusion

What did we learn?

6 parameters are enough, but simple LJ (2) is not

Potential is short ranged

Other target properties can be incorporated

Simplex is fast, but can be trapped, inefficient for ≥10
parameters

Use of learning optimizers (e.g. CMA Evolution Strategy or
genetic algorithms) possible

Functional potential can speed up the simulations

Mapping can be optimized as well

The optimization view provides a framework to aim for a broader
class of coarse-grained models.
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Relative Entropy Method
Introduction

Find a coarse-grained model, which minimizes the relative entropy6:

Srel =
∑

i

pAA(ri ) ln

(

pAA(ri )

pCG (M(ri ))

)

+ 〈Smap〉AA

Minimal Srel = maximum likelihood that configuration of the
model CG is representative of the target AA ensemble

Minimizing Srel optimizes the CG model

Closely related to the inverse Monte Carlo method

6M. S. Shell, JCP 129, 1441 (2008)
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Relative Entropy Method
Example: Water
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Similar to previous results, but method can be used for non-bulk
cases as well7.

7S. Y. Mashayak and N. R. Aluru, JCP 137, 214707 (2012)
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More Simulation Backends
Example: Water

VOTCA was developed around GROMACS, but other packages
might have other special feature and more advanced technique

In 2010 (together with Tristan) first ESPResSo interface

Interface very restricted, because too similar to GROMACS
interface

Support for ESPReSo, LAMMPS, dl poly and ESPReSo++
was added through a very thin interface

Let the user write the simulation script and VOTCA calls it.

dl poly interface is similar to GROMACS interface as both are
made for atomistic simulations
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Conclusion
VOTCA Team

Core developers

Christoph Junghans
Victor Rühle

Implementations

Sebastian Fritsch interface to AdResS
Mara Jochum SIMPLEX algorithm
Konstantin Koschke parallel analysis engine
Alexander Lukyanov force-matching
Sikandar Mashayak relative entropy method
Tristan Bereau orig. interface to ESPResSo
Dominic Röhm interface to ESPResSo
Louis Vernon interface to LAMMPS
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Conclusion
VOTCA Package

Linus Torvalds:

Talk is cheap, show me the code.

It’s free
All examples are in the tutorial
It’s flexible and expandable

Visit us at www.votca.org
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Conclusion
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The End

Thank you for your attention !
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