Bottom-up Coarse-graining

Denis Andrienko

Max Planck Institute for Polymer Research Mainz, Germany

Stuttgart, 8 October 2013

Our dream

Quantum Chemistry

Ground/Excited states Electrostatic multipoles Polarizabilities

Statistical Physics

Advanced sampling techniques Master Equation solvers Long-range Interactions

Continuous Models

Drift-diffusion solvers Self-consistent field techniques

Statistical Physics

Interaction between two neighboring sites only $E_{i,i+1} = -Js_is_{i+1}$

Hamiltonian

$$H = \sum_{i} E_{i,i+1}$$

Partition function

$$Z = \sum_{i,s_i=\pm 1} \exp(-\beta H) = \sum_{s_i=\pm 1} \prod_i \exp(\beta J s_i s_{i+1})$$

Can we invent a smart way of evaluating the partition function?

Real space renormalization group: Decimation

Partition functionDecimated partition function
$$Z = \sum_{s_i = \pm 1} \prod_i \exp \beta J s_i s_{i+1}$$
 $Z = \sum_{s_{2n}} \prod_{i=2n} \sum_{s_{2n+1}} \exp \beta J (s_{2n} s_{2n+1} + s_{2n+1} s_{2n+2})$ $substitutions$ $exp \beta J s_i s_{i+1} = \cosh \beta J (1 + u s_i s_{i+1})$ $u = \tanh \beta J$ $u = \tanh \beta J$ $Z = \sum_{s_i} \prod_i \cosh \beta J (1 + u s_i s_{i+1})$ $Z = \sum_{s_{2n}} \prod_{i=2n} 2 \cosh^2 \beta J (1 + u^2 s_{2n} s_{2n+1})$

Similar sum but two times less sites. Repeat!

Coarse-grained Ising is again Ising!

Our first bottom-up coarse-grained model

new coupling constants $\tanh \beta J' = \tanh^2 \beta J$ $\beta J' = \frac{1}{2} \ln \cosh \beta J$

Check coupling constants when $n \to \infty$

Coupling constants

$$\beta J' = \frac{1}{2} \ln \cosh \beta J$$

Attraction points $\beta J = 0$ - stable $(T \rightarrow \infty)$ $\beta J = \infty$ - unstable

At some length-scale the coupling always becomes small, no matter how strong the microscopic coupling was

No long-range order in 1D systems with finite interaction range
 Fluctuations in 1D always eliminate phase transition

Generalize to more complex systems?

1. Chose blocks: two spins combined into one Mapping operator: Ising -> CG Ising

2. Integrate out "unneeded" degrees of freedom Effective CG potential

3. Project effective potential on a CG force-field No need, CG Ising has the same Z(s) as Ising Z(s)

Coarse-graining of particle-based systems

Atomistic system polypyrrole chain	n < N	barse-grained system 10 PPY repeat units
$\boldsymbol{r}^n = \{\boldsymbol{r}_1, \dots, \boldsymbol{r}_n\}$	coordinates	$\boldsymbol{R}^N = \{\boldsymbol{R}_1, \dots, \boldsymbol{R}_N\}$
$\boldsymbol{p}^n = \{ \boldsymbol{p}_1, \dots, \boldsymbol{p}_n \}$	momenta	$\boldsymbol{P}^N = \{\boldsymbol{P}_1, \dots, \boldsymbol{P}_N\}$
	Hamiltonian	
n		Ν

$$h(\mathbf{r}^{n}, \mathbf{p}^{n}) = \sum_{i=1}^{n} \frac{1}{2m_{i}} \mathbf{p}_{i}^{2} + u(\mathbf{r}^{n}) \qquad H(\mathbf{R}^{N}, \mathbf{P}^{N}) = \sum_{I=1}^{N} \frac{1}{2M_{I}} \mathbf{P}_{I}^{2} + U(\mathbf{R}^{N})$$

Canonical (NVT) ensemble

$$p(\mathbf{r}^{n}) \sim \exp\left[-\beta u(\mathbf{r}^{n})\right] \quad \text{Boltzmann} \quad P(\mathbf{R}_{N}) \sim \exp\left[-\beta U(\mathbf{R}^{N})\right]$$
$$p(\mathbf{p}^{n}) \sim \exp\left[-\beta \sum_{i=1}^{n} \frac{\mathbf{p}_{i}^{2}}{2m_{i}}\right] \quad \text{Maxwell} \quad P(\mathbf{P}_{N}) \sim \exp\left[-\beta \sum_{I=1}^{N} \frac{\mathbf{P}_{I}^{2}}{2M_{I}}\right]$$

Total probability

 $p_{rp}(\boldsymbol{r}^n, \boldsymbol{p}^n) = p_r(\boldsymbol{r}^n)p_p(\boldsymbol{p}^n)$

 $P_{RP}(\boldsymbol{R}^{N}, \boldsymbol{P}^{N}) = P_{R}(\boldsymbol{R}^{N})P_{P}\boldsymbol{P}^{N}$

physical intuition

$$p_{rp}(\boldsymbol{r}^n, \boldsymbol{p}^n) = P_{RP}(\boldsymbol{R}^N, \boldsymbol{P}^N)$$

W. Noid et al., J. Chem. Phys. 120, 244114 (2008)

Mapping operators

$$\boldsymbol{R}_{I} = \boldsymbol{M}_{\boldsymbol{R}I}(\boldsymbol{r}^{n}) = \sum_{i=1}^{n} c_{Ii}\boldsymbol{r}_{i}$$
$$\boldsymbol{P}_{I} = \boldsymbol{M}_{\boldsymbol{P}I}(\boldsymbol{p}^{n}) = M_{I}\sum_{i=1}^{n} \frac{c_{Ii}\boldsymbol{p}_{i}}{m_{i}}$$

 c_{Ii} is an $N \times n$ matrix

 $\sum_{i} c_{Ii} = 1$ (translational invariance)

Propane CM: $4 \times 1, 3 \times 1, 4 \times 1$ block matrix

Here: linear mapping operators only You will have to specify c_{Ii} in the VOTCA input files!

Equilibrium probability density for CG variables

$$p_R(\mathbf{R}^N) = \int d\mathbf{r}^n p_r(\mathbf{r}^n) \delta\left(\mathbf{M}_{RI}^N(\mathbf{r}^n) - \mathbf{R}^N\right)$$

$$p_P(\mathbf{P}^N) = \int d\mathbf{p}^n p_p(\mathbf{p}^n) \delta(\mathbf{M}_{PI}^N(\mathbf{p}^n) - \mathbf{P}^N)$$

delta function sorts microscopic states in appropriate coarse-grained states

Consistency of the CG and the atomistic models

$$P_{RP}(\boldsymbol{R}^{N}, \boldsymbol{P}^{N}) = p_{RP}(\boldsymbol{R}^{N}, \boldsymbol{P}^{N})$$

Potential of Mean Force

$$P_{RP}(\boldsymbol{R}^{N}, \boldsymbol{P}^{N}) = p_{RP}(\boldsymbol{R}^{N}, \boldsymbol{P}^{N})$$

is equivalent to

momentum space:

$$M_I = \left(\sum_{i \in \mathbf{I}} \frac{c_{Ii}^2}{m_i}\right)^{-1}$$

coordinate space:

$$\exp[-\beta U(\mathbf{R}^N)] \sim \int d\mathbf{r}^n \exp[-\beta u(\mathbf{r}^n)] \delta(\mathbf{M}_{\mathbf{R}I}^N(\mathbf{r}^n) - \mathbf{R}^N)$$

$$\boldsymbol{F}_{I}(\boldsymbol{R}^{N}) = \left\langle \boldsymbol{\mathcal{F}}_{I}\left(\boldsymbol{r}^{n}\right) \right\rangle_{\boldsymbol{R}^{N}}$$

The CG interaction potential is the **potential of mean force** The CG force is a conditioned expectation value of the atomistic force

W. Noid et al., J. Chem. Phys. 120, 244114 (2008)

Force-field basis set functions

PMF provides **exact** mapping of the atomistic onto CG system

PMF requires many-body potential functions $G_I(\mathbb{R}^N)$, MD force-fields provide a **limited** set of many-body potentials (angles, dihedrals)

In a nutshell

Project the many-body potentials on the functions provided by the force-field

$$\chi^{2}[\boldsymbol{G}] = \frac{1}{3N} \left| \sum_{I=1}^{N} \left| \boldsymbol{\mathcal{F}}_{I} \left(\boldsymbol{r}^{n} \right) - \boldsymbol{G}_{I} \left(\boldsymbol{M}_{\boldsymbol{R}}^{N}(\boldsymbol{r}^{n}) \right) \right|^{2} \right|$$

The global minimum of the functional χ for G in the vector space of CG force fields is achieved when G is F

This is exactly what force-matching (MSCG) is doing: projecting many-body PMF onto the CG force-field basis functions

> S. Izvekov and G. Voth, J. Chem. Phys. 123, 134105 (2005) W. Noid et al., J. Chem. Phys. 120, 244114 (2008)

It is a non-iterative method

Example: hexane in vacuum

V. Ruehle, et al, J. Chem. Theor. Comp., 5, 3211-3223, 2009

Example: water model (SPC/E)

Pair potential is not reproducing the local tetrahedral structure

Molinero V. & Moore E. B. (2009), J. Phys. Chem. B, 113, 4008-4016

Larini, L.; Lu, L. & Voth, G. A. (2010), J. Chem. Phys. 132, 164107

What if we do not have forces?

(e.g Monte Carlo is used for sampling)

CG procedure can be reformulated in terms of correlation functions

 $\begin{array}{ll} \mbox{correlation function} & \mbox{simple liquid} \\ \rho_1(\pmb{r}_1) & \rho \mbox{-density} \\ \rho_2(\pmb{r}_1,\pmb{r}_2) & g(r) \mbox{-pair distribution function} \\ \rho_3(\pmb{r}_1,\pmb{r}_2,\pmb{r}_3) & \end{array}$

...

Normally ρ and g(r) are used (easy to compute)

A classical analogue of the Hohenberg-Kohn theorem in DFT

$g(r) \equiv U(r)$

pairwise potential U(r) is unique

All structure-based methods matching ρ and g(r) converge to the same coarse-grained potential

Henderson, R. Phys. Lett. A 1974, A49, 197–198.

no correlations between DOF

 $\delta U_{\xi}(r) = w_{\xi}(r) - W_{\xi}(r) \sim k_{\mathrm{B}}T \ln \left[P_{\xi}(r)/p_{\xi}(r)\right]$

W.G. Noid (2007): J. Phys. Chem. B 111, 4116-4127 J. Chem. Phys. 139, 090901 (2013)

Iterative Boltzmann Inversion

IBI: iterative, local, no correlations.Robust, but it is not clear if it works for mixtures.

D. Reith et al., J. Comp. Chem. 24 (13), 1624 (2003) A. K. Soper, Chem. Phys. 202, 295 (1996)

Inverse Monte Carlo

$$S_{\alpha} = \frac{N(N-1)}{2} \frac{4\pi r_{\alpha}^2 \Delta r}{V} g(r_{\alpha})$$

number of particles in shell Δr at a distance r_{α}

$$H = \sum_{i,j} U(r_{ij}) = \sum_{\alpha} S_{\alpha} U_{\alpha}$$

$$\delta \langle S_{\alpha} \rangle = \langle S_{\alpha} \rangle - S_{\alpha}^{\text{ref}} = \sum_{\gamma} \frac{\partial \langle S_{\alpha} \rangle}{\delta U_{\gamma}} \delta U_{\gamma} + \mathcal{O}(\delta U^{2})$$
$$A_{\alpha\gamma} = \frac{\partial \langle S_{\alpha} \rangle}{\partial U_{\gamma}} = \frac{\partial}{\partial U_{\gamma}} \frac{\int dq S_{\alpha}(q) \exp[-\beta H(q)]}{\int dq \exp[-\beta H(q)]}$$

$$A_{\alpha\gamma} = \beta (\langle S_{\alpha} \rangle \langle S_{\gamma} \rangle - \langle S_{\alpha} S_{\gamma} \rangle)$$

In the first order we need only averages (RDF) and correlations

A. Lyubartsev et al., Phys. Rev. E 52 (4), 3730 (1995)

B. R. H. Swendsen, Phys. Rev. Lett. 42, 859 (1979)

Inverse Monte Carlo

$$\langle S_{\alpha} \rangle - S_{\alpha}^{\text{ref}} = \sum_{\gamma} A_{\alpha\gamma} \delta U_{\gamma}$$
$$A_{\alpha\gamma} = \beta (\langle S_{\alpha} \rangle \langle S_{\gamma} \rangle - \langle S_{\alpha} S_{\gamma} \rangle)$$

$$\delta U = A^{-1}[\langle S \rangle - S^{\text{ref}}]$$

non-local, iterative, particle-particle correlations are included
A is tricky to invert

A. Lyubartsev et al., Phys. Rev. E 52 (4), 3730 (1995)

IMC implementation

Examples: SPC/E water

IBI and IMC reproduce RDF and give similar potentials

Examples: Efficiency

IMC converges faster but needs longer iterations Less computational costs for IBI

Test your CG model!

Bond-angle correlations are not reproduced affects chain stiffness, end-to-end distance

Summary

Coarse-graining provides a systematic way to parameterize a force-field based on selected properties of a reference system

Can be based on

- Distribution functions:
 - Boltzmann inversion
 - Iterative Boltzmann Inversion
 - Inverse Monte Carlo
 - Relative Entropy (talk of Sikandar)
 - Many-body potential of mean force
 - force matching
 - MSCG
- Desired thermodynamic property
 - Simplex algorithm

Software

Versatile Object-oriented Toolkit for Coarse-graining Applications

votca.org

open source

C++, test suite, hg repository, wiki pages, bug tracker, mailing list

votca-csg modules (coarse-graining) Google code: votca project **votca-ctp** modules (charge transport) Google code: votca-ctp project

Happy coarse-graining!

charge transport: V. Ruehle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier, D. Andrienko, J. Chem. Theor. Comp., 2011 coarse-graining: V. Ruehle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theor. Comp., 5, 3211-3223, 2009