Bottom-up Coarse-graining

Denis Andrienko

Max Planck Institute for Polymer Research
Mainz, Germany

Stuttgart, 8 October 2013
Our dream

Quantum Chemistry

Ground/Excited states
Electrostatic multipoles
Polarizabilities

Statistical Physics

Advanced sampling techniques
Master Equation solvers
Long-range Interactions

Continuous Models

Drift-diffusion solvers
Self-consistent field techniques

no fitting parameters, quantitative accuracy
One-dimensional Ising model

\[s_i = 1 \text{ (spin up)} \quad s_j = -1 \text{ (spin down)} \]

spins interact

\[-J \text{ (energetically good)} \quad +J \text{ (entropically good)} \]

configurations

Low T

High T
Statistical Physics

Interaction between two neighboring sites only
\[E_{i,i+1} = -J s_i s_{i+1} \]

Hamiltonian
\[H = \sum_i E_{i,i+1} \]

Partition function
\[Z = \sum_{i,s_i=\pm 1} \exp(-\beta H) = \sum_{s_i=\pm 1} \prod_i \exp(\beta J s_i s_{i+1}) \]

Can we invent a smart way of evaluating the partition function?
Real space renormalization group: Decimation

Partition function

\[Z = \sum_{s_i = \pm 1} \prod_i \exp \beta J s_i s_{i+1} \]

Decimated partition function

\[Z = \sum_{s_{2n}} \prod_{i=2n}^{s_{2n+1}} \exp \beta J (s_{2n}s_{2n+1} + s_{2n+1}s_{2n+2}) \]

Substitutions

\[\exp \beta J s_i s_{i+1} = \cosh \beta J (1 + us_i s_{i+1}) \]
\[u = \tanh \beta J \]

\[Z = \sum \prod \cosh \beta J (1 + us_i s_{i+1}) \]
\[Z = \sum \prod 2 \cosh^2 \beta J (1 + u^2 s_{2n}s_{2n+1}) \]

Similar sum but two times less sites. Repeat!
Coarse-grained Ising is again Ising!

\[Z = \sum_{s_i} \prod_i \cosh \beta J (1 + u s_i s_{i+1}) \]

\[Z = \sum_{s_{2n}} \prod_{i=2n} 2 \cosh^2 \beta J (1 + u^2 s_{2n} s_{2n+1}) \]

Our first bottom-up coarse-grained model

new coupling constants

\[\tanh \beta J' = \tanh^2 \beta J \]

\[\beta J' = \frac{1}{2} \ln \cosh \beta J \]

Check coupling constants when \(n \to \infty \)
Coupling constants

1. No long-range order in 1D systems with finite interaction range
2. Fluctuations in 1D always eliminate phase transition

Generalize to more complex systems?

\[\beta J' = \frac{1}{2} \ln \cosh \beta J \]

Graphical solution

\[K = \beta J \]

Attraction points

\[\beta J = 0 \text{ - stable } (T \to \infty) \]
\[\beta J = \infty \text{ - unstable} \]

At some length-scale the coupling always becomes small, no matter how strong the microscopic coupling was
Summary

1. Chose blocks: two spins combined into one
 Mapping operator: Ising -> CG Ising

2. Integrate out “unneeded” degrees of freedom
 Effective CG potential

3. Project effective potential on a CG force-field
 No need, CG Ising has the same $Z(s)$ as Ising $Z(s)$
Coarse-graining of particle-based systems

Atomistic system
polypyrrole chain

\[r^n = \{ r_1, \ldots, r_n \} \]

\[p^n = \{ p_1, \ldots, p_n \} \]

Coarse-grained system
10 PPY repeat units

\[n < N \]

coordinates

momenta

Hamiltonian

\[h(r^n, p^n) = \sum_{i=1}^{n} \frac{1}{2m_i} p_i^2 + u(r^n) \]

\[H(R^N, P^N) = \sum_{i=1}^{N} \frac{1}{2M_i} P_i^2 + U(R^N) \]
Canonical (NVT) ensemble

\[p(\mathbf{r}^n) \sim \exp[-\beta u(\mathbf{r}^n)] \]
Boltzmann

\[P(\mathbf{R}_N) \sim \exp[-\beta U(\mathbf{R}_N)] \]

\[p(\mathbf{p}^n) \sim \exp \left[-\beta \sum_{i=1}^{n} \frac{p_i^2}{2m_i} \right] \]
Maxwell

\[P(\mathbf{P}_N) \sim \exp \left[-\beta \sum_{i=1}^{N} \frac{P_i^2}{2M_i} \right] \]

Total probability

\[p_{rp}(\mathbf{r}^n, \mathbf{p}^n) = p_r(\mathbf{r}^n)p_p(\mathbf{p}^n) \]

\[P_{RP}(\mathbf{R}_N, \mathbf{P}_N) = P_R(\mathbf{R}_N)P_P\mathbf{P}_N \]

Physical intuition

\[p_{rp}(\mathbf{r}^n, \mathbf{p}^n) = P_{RP}(\mathbf{R}_N, \mathbf{P}_N) \]

Mapping operators

\[R_I = M_{RI}(r^n) = \sum_{i=1}^{n} c_{II_i} r_i \]

\[P_I = M_{PI}(p^n) = M_I \sum_{i=1}^{n} \frac{c_{II_i} p_i}{m_i} \]

\(c_{II_i} \) is an \(N \times n \) matrix

\(\sum_i c_{II_i} = 1 \) (translational invariance)

Propane CM: 4 x 1, 3 x 1, 4 x 1 block matrix

Here: linear mapping operators only
You will have to specify \(c_{II_i} \) in the VOTCA input files!
Conditional probabilities

Equilibrium probability density for CG variables

\[\rho_R(R^N) = \int dr^np_r(r^n)\delta(M_{RI}^N(r^n) - R^N) \]

\[\rho_P(P^N) = \int dp^np_p(p^n)\delta(M_{PI}^N(p^n) - P^N) \]

delta function sorts microscopic states in appropriate coarse-grained states

Consistency of the CG and the atomistic models

\[P_{RP}(R^N, P^N) = \rho_{RP}(R^N, P^N) \]
The CG interaction potential is the potential of mean force
The CG force is a conditioned expectation value of the atomistic force

\[P_{RP}(R^N, P^N) = p_{RP}(R^N, P^N) \]

is equivalent to

\[M_I = \left(\sum_{i \in I} \frac{c_{ii}^2}{m_i} \right)^{-1} \]

momentum space:

\[
\exp[-\beta U(R^N)] \sim \int d\mathbf{r}^n \exp[-\beta u(\mathbf{r}^n)] \delta(M_{RI}^N(\mathbf{r}^n) - R^N)
\]

coordinate space:

\[F_I(R^N) = \langle \mathcal{F}_I(\mathbf{r}^n) \rangle_{R^N} \]
Force-field basis set functions

PMF provides **exact** mapping of the atomistic onto CG system.

PMF requires many-body potential functions $G_I(R^N)$, MD force-fields provide a **limited** set of many-body potentials (angles, dihedrals).
In a nutshell

coarse-graining

Atomistic model

Coarse-grained model

Force Matching
Inverse Monte Carlo
Relative Entropy
Iterative Boltzmann Inversion
Conditional Reversible Work

backmapping
Variational principle

Project the many-body potentials on the functions provided by the force-field

\[\chi^2[G] = \frac{1}{3N} \left\langle \sum_{I=1}^{N} \left| \mathcal{F}_I (r^n) - G_I \left(M^N_R(r^n) \right) \right|^2 \right\rangle \]

The global minimum of the functional \(\chi \) for \(G \) in the vector space of CG force fields is achieved when \(G \) is \(F \)

This is exactly what force-matching (MSCG) is doing: projecting many-body PMF onto the CG force-field basis functions

Force matching, **MultiScale Coarse-Graining**

It is a non-iterative method.
Example: hexane in vacuum

Forces have off-plane components which are not present in the basis set of the coarse-grained force-field

Example: water model (SPC/E)

Pair potential is not reproducing the local tetrahedral structure

Structure-based coarse-graining

What if we do not have forces?
(e.g. Monte Carlo is used for sampling)

CG procedure can be reformulated in terms of correlation functions

\[
\begin{align*}
\text{correlation function} & \quad \text{simple liquid} \\
\rho_1(r_1) & \quad \rho - \text{density} \\
\rho_2(r_1, r_2) & \quad g(r) - \text{pair distribution function} \\
\rho_3(r_1, r_2, r_3) & \\
\ldots
\end{align*}
\]

Normally \(\rho \) and \(g(r) \) are used (easy to compute)
Henderson theorem

A classical analogue of the Hohenberg-Kohn theorem in DFT

\[g(r) \equiv U(r) \]

pairwise potential \(U(r) \) is unique

All structure-based methods matching \(\rho \) and \(g(r) \) converge to the same coarse-grained potential

Liquid state theory – Yvon-Born-Green equation

Pair potential of mean force

\[-W'_\xi(r) = F_\xi(r) + \sum_{\xi'} dr' G_{\xi \xi'}(r, r') F_{\xi'}(r')\]

Direct force Correlation function

integrated

\[W_\xi(r) = U_\xi(r) + \sum_{\xi'} W_{\xi \xi'}(r, r')\]

no correlations between DOF

\[\delta U_\xi(r) = w_\xi(r) - W_\xi(r) \sim k_B T \ln [P_\xi(r)/p_\xi(r)]\]

Iterative Boltzmann Inversion

\[\delta U(r) = k_B T \ln \frac{g(r)}{g_{\text{ref}}(r)} \]

IBI: iterative, local, no correlations.
Robust, but it is not clear if it works for mixtures.

Inverse Monte Carlo

\[H = \sum_{i,j} U(r_{ij}) = \sum_{\alpha} S_\alpha U_\alpha \]

\[\delta\langle S_\alpha \rangle = \langle S_\alpha \rangle - S_\alpha^{\text{ref}} = \sum_{\gamma} \frac{\partial \langle S_\alpha \rangle}{\partial U_\gamma} \delta U_\gamma + \mathcal{O}(\delta U^2) \]

\[A_{\alpha\gamma} = \frac{\partial \langle S_\alpha \rangle}{\partial U_\gamma} = \frac{\partial}{\partial U_\gamma} \frac{\int dq S_\alpha(q) \exp[-\beta H(q)]}{\int dq\exp[-\beta H(q)]} \]

\[A_{\alpha\gamma} = \beta \left(\langle S_\alpha \rangle \langle S_\gamma \rangle - \langle S_\alpha S_\gamma \rangle \right) \]

In the first order we need only averages (RDF) and correlations

Inverse Monte Carlo

\[\langle S_\alpha \rangle - S^\text{ref}_\alpha = \sum_\gamma A_{\alpha\gamma} \delta U_\gamma \]

\[A_{\alpha\gamma} = \beta (\langle S_\alpha \rangle \langle S_\gamma \rangle - \langle S_\alpha S_\gamma \rangle) \]

\[\delta U = A^{-1} [\langle S \rangle - S^\text{ref}] \]

- non-local, iterative, particle-particle correlations are included
- \(A \) is tricky to invert

IMC implementation

Global initialization
- Initialize global variables (paths to scripts, executables and user-defined scripts)

Iteration initialization
- Convert target distribution functions into internal format, prepare input files, copy data of the previous step

Prepare sampling
- Prepare input files for the external sampling program

Sampling
- Canonical ensemble sampling with molecular dynamics, stochastic dynamics or Monte Carlo techniques

Calculate updates
- Analysis of the run. Evaluation of distribution functions, potential updates $\Delta U^{(n)}$

Postprocessing of updates
- Smoothing, extrapolation of potential updates. Ad-hoc pressure correction.

Update potentials
- $U^{(n+1)} = U^{(n)} + \Delta U^{(n)}$

Postprocessing of potentials
- Smoothing, extrapolation of potentials $U^{(n+1)}$

Continue? (yes/no)
- Evaluation of the convergence criterion either for $\Delta U^{(n)}$ or distribution functions. Check the number of iterations.

Finish
Examples: SPC/E water

IBI and IMC reproduce RDF and give similar potentials
Examples: Efficiency

IMC converges faster but needs longer iterations
Less computational costs for IBI
Test your CG model!

Bond-angle correlations are not reproduced affects chain stiffness, end-to-end distance
Coarse-graining provides a systematic way to parameterize a force-field based on selected properties of a reference system.

Can be based on

- Distribution functions:
 - Boltzmann inversion
 - Iterative Boltzmann Inversion
 - Inverse Monte Carlo
 - Relative Entropy (talk of Sikandar)
- Many-body potential of mean force
 - force matching
 - MSCG
- Desired thermodynamic property
 - Simplex algorithm
Versatile Object-oriented Toolkit for Coarse-graining Applications

\texttt{votca.org}

open source
C++, test suite, hg repository, wiki pages, bug tracker, mailing list

\textbf{votca-csg} modules (coarse-graining)
Google code: votca project

\textbf{votca-ctp} modules (charge transport)
Google code: votca-ctp project

\textbf{Happy coarse-graining!}
