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‘What you will see

e Short intro to Lattice-Boltzmann

e Shan-Chen multicomponent fluid

e ESPResSo implementation

e Coupling particle dynamics

e Examples
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The Lattice-Boltzmann Method
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What is LB and why
‘would | use it?

¢| B = Boltzmann transport
equation on a lattice

eSolves Navier-Stokes
equations over a wide range
of Reynolds numbers
eSimple parallel code
eCoarse-graining solvent

degrees of freedom
(more on this later)

Video: ESPResSo LB-GPU, D. Roehm, ICP
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- From the Boltzmann Equation to Hydrodynamics

3
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Momenta of the distribution f

m/fdv=p(r,t) m/"fd"zﬂu(r,t)

m/V;fdv = pe(r,t)
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—asy LB: the BGK approximation

Total change in time

0 0
§f+V' afz T)\(f—feq),
Collisions: relaxation towards
- m - equilibrium
D2Q09:
n L 8+1 discrete
velocities In 2D

fi(r + 7C;, T + T) o fi(rat) — A [fi(ra t) o f;q(ra t)]

Discretized Boltzmann Equation
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Multicomponent
Fluids

e Emulsification

e Encapsulation

e Sprays

¢ Food processing

e Paints

e Qil recovery
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‘The Shan-Chen multicomponent fluid
gc(r) = —pc(r) Y > gecrper () — 1)
r: ¢

e Two density fields (index C)

gc(r) =~ —pe(r) Y gce Ve (r)

e One baricentric velocity <

e Force g between components
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The multi-phase state diagram
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Shan, Chen, PRE 1993
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‘The Shan-Chen multicomponent fluid

Continuity Op+ V- (pu) =

o
Navier-Stokes » (&"’ + (u - V)U) = —-Vp+ V. (II+0) +Zg<
¢

0 "
Components diffusion 5:Pc TV - (pcu) =V - (D¢ +§¢)

1
p=3cpc P=3,Pc=DcGE u=-3 Y fuei+yore

¢
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‘Modes evolution and transport coefficients

19 modes:

1 mass, 3 momentum
5 shear + 1 bulk stress
9 ghost (kinetic)

me = (14 Ax)mek +miy, + rri

d 2
(Btu + (u- V)u) — —Vp+V-(l'I+a)+zc:gg

0 .
5Pt V- (pcu) =V - (D¢ + &)

.5 = a'u,+(9 giué
B ~Hlle dr, P Org “= 3 Or, —ep

o D, — 5pc_P43p) ( P )]
& 7]5677'1"7601[3, S [(8Ta p Orq o P e

Tuesday, October 8, 2013



‘Shan-Chen in ESPResSo: some technical details

e GPU code (all examples done
on this laptop)

e Full 3D multi-relaxation times
(instead of simple BGK)

¢ \Written in mode space
(evolving modes rather than
populations)

e Solves Fluctuating
Hydrodynamics
(all modes are thermalized)

e Extension of the Dinweg/Ladd/
Schiller Generalized Lattice Gas
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| attice-Boltzmann as a thermostat:
Solvent Coarse-Graining

A

Full Atomistic

Solvent Removal
e.q.+GB electrostatics

Coarse-graining

MR R

"R Nl L
- -,

-Xtreme” coarse-graining
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g Lattice-Boltzmann as a thermostat:
% Solvent Coarse-Graining

A

*[_ong range interactions might play
a role
*Electrostatics
*Hydrodynamic interaction

-t
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L i e

¢ wel 7 S5 o - n

e X s SR R S S s N
’ f’ ’,'“:‘ A\}‘.' C’K‘ ' & "'l‘. :"‘)l'i:» -re-""." '_"." >
nd "bq.l;\&--§-§.~- .‘?1".-"’)!‘./: ‘.“._,{;:_oﬁ-“.'
IR (8 L VL Sl RO LT N i
P % SO 4 A ot

eUsual thermostats are neither I R O R NS )
momentum-preserving, nor local

eExample: Nose-Hoover thermostat

non Galileian-invariant: momentum preserved
only when COM is at rest
non local: momentum preserved only

globally

=-V,U-ap,,

do.
m,-dr,-/dt - pi’ Ltl

e _lr-T1y
dt :
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g Lattice-Boltzmann as a thermostat:
% Solvent Coarse-Graining

A

eSeveral options: DPD, SRD, LB

ofor LB: Ahlrichs-Dunweg coupling

ma; = F —v[v; —u(r;)| + R
®|_angevin eq. guarantees proper

thermalization

eProvides a meaningful coupling to
the fluid
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g Shan-Chen LB as a thermostat:
% Solvent Coarse-Graining

enough

2

AE(z) / kg T, p(z) @°

-0.5

o
1.9 |

1 1

e A simple extension is not ma;

ps
Fi

e Fluid-particle interaction:
solvation free energy

>~

-10

5 10

=F —vy[v;—u(r;)]+ R
== K Vpe(rs)
¢

Free energy of a point particle

\/ P = o = koo

ka =kgTa®, kg = 2krTa’
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g Shan-Chen LB as a thermostat:
% Solvent Coarse-Graining

e A problem of symmetry...

e Particle-fluid interaction

(ri—7r) (—=7)] -7
re—r| 7=l [ =P

FE(r) = ~Xepc(r) 36 |

O(z) = 1if 0 < z < 1 and 0 otherwise.

e For small As, same particle free energy

e Density change around the particle
(excluded volume/hydration effect)

Only one fluid here!
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Effect of solvation

e Raspberry colloid

® Ared <0
(“red” component attracted)

® Apiue >0
(“blue” component repelled)

¢ |nterface protrusion
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‘Electrostatic stabilization ()

e Polyelectrolytes in a bi-
component fluid

e 10 chains (64 monomers each)
+ 640 counterions

e P3M electrostatics

e 32x32x32 SC grid

® Kred<0, SAMe Kreg fOr monomers
and counterions
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Electrostatic stabilization (Il)

e Polyelectrolytes in a bi-
component fluid

e 10 chains (64 monomers each)
+ 640 counterions

e Debye-Huckel
screened electrostatics

e 32x32x32 SC grid

® Kred<0, SAMe Kreg fOr monomers
and counterions

U-I-)H('r" Y {Qz’QjeB CXP(_’irij)/Tz'j
1] b B S
0
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urfactants &

S
‘Surface Tension

o e\

e Can we achieve proper
thermalization?

e Simulate amphiphilic dumbbells

e Measure interface fluctuation
spectrum

<h2(q)> _ 2knl" 1

YAB q*

104 |
10° |
10° |

<h™(q)>

10° |
107 |
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Solvent Affinity

uir) 4

e Good solvent (R*) o< N%/?

Unardd?) 4 u

e O-solvent (R*) x N %

)

Udr) §

(R?) A1/3 %

e Poor solvent 0

(©
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Solvent affinity

T—Toff

46(( = )12 B (L)6 + cshift) aif Tmin + Toff < T < Teut T Toff
0 , otherwise

, otherwise

A(r) ={ il_Taz [1+ tanh(2)] + U572 (1 + tanh(~26)] ,if r > rew + 260
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Solvent affinity

e Colloid with two polymer arms

e “Stretched” start

e Blue: bad solvent

e Red: good solvent
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‘Conclusions

e Newly implemented Shan-Chen bicomponent fluid
e Multi-relaxation times, Fluctuating Hydrodynamics

e Coupling with particles:

e Solvation free energy
e Component-dependent forces

e Complex fluid-fluid interfaces where thermal energy
competes with surface tension .
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