Mesoscopic Simulations of Lipid Membranes

Patrick Diggins, Mingyang Hu and Markus Deserno

Department of Physics, Carnegie Mellon University, Pittsburgh PA, USA

October 8, 2013

Outline

- Introduction
 - Lipid Membranes
 - Why coarse-graining
- Solvent-free CG Model
 - Why Solvent-free
 - Model
- Properties
 - Membrane Elasticity
 - Bending
 - Line Tension
- Code Implementation
- Applications
 - Vesicles
 - Protein-induced Budding
 - Lipid A-B Mixtures

Lipid Membranes

- Lipid membranes form continuous barriers around cells and cellular organelles.
- They are formed by two layers of lipid molecules.

Lipid molecules: Building Blocks

- Lipids are amphiphilic molecules
 - Hydrophilic head (soluble in water)
 - Hydrophobic tail (insoluble in water)
- Membranes form by spontaneous aggregation (self-assemble)

Scaling of Membrane Simulations

- Example simulation¹
 - All-atom lipid bilayer
 - 20 nm X 20 nm
 - 1024 lipids
 - Simulation time: 10 ns

¹Lindahl, E. and Edholm, O. *Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations.* Biophys. J. 79, 426-433 (2000)

Scaling of Membrane Simulations

- Example simulation¹
 - All-atom lipid bilayer
 - 20 nm X 20 nm
 - 1024 lipids
 - Simulation time: 10 ns

What if we want a box length of L = 200 nm? How does computing effect scale with L?

effort ~ L^2

Amount of material

¹Lindahl, E. and Edholm, O. *Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations.* Biophys. J. 79, 426-433 (2000)

Scaling of Membrane Simulations

- Example simulation¹
 - All-atom lipid bilayer
 - 20 nm X 20 nm
 - 1024 lipids
 - Simulation time: 10 ns

What if we want a box length of L = 200 nm? How does computing effect scale with L?

effort ~
$$L^2$$
 × L^4 ~ L^6
Amount of material Equilibration time

¹Lindahl, E. and Edholm, O. *Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations.* Biophys. J. 79, 426-433 (2000)

Reason for Coarse-graining

- Going from 20 nm to 200 nm is a million times more expensive.
- Can parallelization compensate?
- Size of membrane: $A = L^2$
- Domain decomposition scheme: increase in CPUs ~ L²
- Simulation time $\sim L^6$
 - uncompensated by a factor of L^4

Parallelization alone does not compensate for increased size.

Reason for Coarse Graining: Efficiency

- Coarse graining gives better sampling.
 - Reduces the number of degrees of freedom
 - Allows larger time steps
 - Smooths the free energy landscape

Reason: Insight

- Coarse graining is the *art* of throwing away unnecessary details.
 - It helps show the important physics of the problem.
 - If the results are not physical, then you know that your theory is missing some important physics.
- Simplify the problem so that we may understand what is happening.

Top-Down approach to CG Lipids

- Goal is to create model that represents physical properties.
- The goal is not to mimic a specific higher resolution model.
- Top-down modeling is an art
 - No systematic way to approach problem

Outline

- Introduction
 - Lipid Membranes
 - Why coarse-graining
- Solvent-free CG Model
 - Why Solvent-free
 - Model
- Properties
 - Membrane Elasticity
 - Bending
 - Line Tension
- Code Implementation
- Applications
 - Vesicles
 - Protein-induced Budding
 - Lipid A-B Mixtures

The CG Model¹

¹I.R. Cooke, K. Kremer, M Deserno, Phys. Rev. E 72, 011506 (2005) I.R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005)

- Coarse-grained lipid designed to probe mesoscopic regime of lipid bilayers.
- 3 beads: reasonable aspect ratio
- Generic bead-spring
- Only pair forces
- Solvent free

Why Solvent Free?

- 16000 DPD lipids, 4 beads per lipid
- 64000 particles for lipids.
- How many total particles in the box?

¹M. Laradji and P.B. Sunil Kumar, Phys. Rev. Lett. 93, 198105 (2004)

Why Solvent Free?

¹M. Laradji and P.B. Sunil Kumar, Phys. Rev. Lett. 93, 198105 (2004)

- Example¹:
- 16000 DPD lipids, 4 beads per lipid
- 64000 particles for lipids.
- How many total particles in the box?
 - 1 536 000 particles
 - 96% of simulation time spent simulating the solvent.

Why Solvent Free?

¹M. Laradji and P.B. Sunil Kumar, Phys. Rev. Lett. 93, 198105 (2004)

They wanted to study the dynamics of domain growth which depends on hydrodynamics.

Example¹:

- 16000 DPD lipids, 4 beads per lipid
- 64000 particles for lipids.
- How many total particles in the box?
 - 1 536 000 particles
 - 96% of simulation time spent simulating the solvent.

Difficulties with Solvent Free Models

- Implicit solvent models are common and very useful in polymer physics.
- The need for self-assembly and fluidity makes lipid membrane models more difficult.

- Cannot use Lennard-Jones interactions:
 - Weak attraction leads to a gas phase
 - Strong attraction leads to a solid (gel) phase
 - No fluid phase

Interactions in the Model

- Need potentials to:
 - Link the beads: $V_{bond}(r) = -\frac{1}{2}k_{bond}r_{\infty}^2 \ln[1 (r/r_{\infty}^2)]$
 - Control the stiffness of the lipid: $V_{bend}(r_{13}) = \frac{1}{2}k_{bend}(r_{13} 4\sigma)^2$
 - Nonbonded : $V_{rep}(r) = 4\epsilon [(r_c/r)^{12} (r_c/r)^6 + 1/4]\Theta(r_c r)$

Self-assembly

Phase behavior of the model

Outline

- Introduction
 - Lipid Membranes
 - Why coarse-graining
- Solvent-free CG Model
 - Why Solvent-free
 - Model

Properties

- Membrane Elasticity
- Bending
- Line Tension
- Code Implementation
- Applications
 - Vesicles
 - Protein-induced Budding
 - Lipid A-B Mixtures

Membrane Elasticity

 Model the membrane as a 2D elastic sheet (continuum theory):

$$\mathbf{E}[S] = \int_{S} dA \left\{ \frac{1}{2} \kappa (K - K_0)^2 + \overline{\kappa} K_G + \sigma \right\}$$

- κ: Bending modulus
- κ

 Gaussian curvature modulus
- $K = c_1 + c_2$: Total curvature
- K₀: Intrinsic curvature
- $K_G = c_1 c_2$: Gaussian curvature
- σ : Surface tension

en.widipedia.org/wiki/Curvature

Bending Modulus from Fluctuation Spectrum

•
$$\mathbf{E}[S] = \int_{S} dA \left\{ \frac{1}{2} \kappa (K - K_0)^2 + \sigma \right\} \simeq \int dx \, dy \left\{ \frac{1}{2} \kappa (\nabla^2 h)^2 + \frac{1}{2} \sigma (\nabla h)^2 \right\}$$

- *h*(*x*, *y*): height function (Monge gauge)
- Fourier expansion and equipartition theorem $\left< \left| h_q \right|^2 \right> = \frac{k_b T}{L^2 [\kappa q^4 + \sigma q^2]} \xrightarrow[\sigma \to 0]{} \frac{k_b T}{L^2 \kappa q^4}$

Fluctuation spectrum from continuum theory

Fluctuation spectrum from continuum theory

Problems with Fluctuation Spectrum

- Equilibration time of Fourier modes scale like q^{-4}
- Measuring large bending modulus κ (20 $k_b T$) from small perturbation (1 $k_b T$).
- Result relevant for strong bending?

$$h(x) = h_q e^{iqx} \rightarrow K = -h''(x) = h_q q^2 e^{iqx}$$
$$\langle K^2 \rangle = q^4 \left\langle \left| h_q \right|^2 \right\rangle = \frac{k_b T}{L^2 \kappa}$$
$$\bar{R} = \frac{1}{\langle K^2 \rangle^{1/2}} = \sqrt{\frac{\kappa}{k_b T}} L \sim 5L$$

к from Actively Bent Membranes

- First implementation¹:
 - Enforce large undulation mode
 - Measure the constraining force.
- Better way²:
 - Stretch a membrane tether

¹W. K. den Otter and W. J. Briels, J. Chem. Phys. 118, 4712 (2003)
²V. A. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)

Cylindrical tethers

• Energy:

$$E = \frac{1}{2} \kappa \left(\frac{A}{R^2} \right)$$

• Force:

$$F = \left(\frac{\partial E}{\partial L}\right)_A = \frac{2\pi\kappa}{R}$$

• Bending modulus: $\kappa = \frac{FR}{2\pi}$

Actively Bent Membranes (Results)

V. A. Harmandaris and M. Deserno, J. Chem. Phys. 125, 204905 (2006)

κ from buckled membrane

- New method to determine κ from a buckled membrane.
- Subject of talk on Friday.

Simple way to extract line tension

- Simulate a periodically half-connected bilayer
- Stress tensor is imbalanced by twice the line tension.

Extracting line tension

Outline

- Introduction
 - Lipid Membranes
 - Why coarse-graining
- Solvent-free CG Model
 - Why Solvent-free
 - Model
- Properties
 - Membrane Elasticity
 - Bending
 - Line Tension

Code Implementation

- Applications
 - Vesicles
 - Protein-induced Budding
 - Lipid A-B Mixtures

Implementation

- mbtools architecture:
 - Engine (C)
 - Interactions (lj-cos² interaction implemented as a feature)
 - Several analysis routines (e.g. modes, stress tensor)
 - User-interface (Tcl)
 - System generation (e.g. initial particle positions)
 - Parameters (configuration files)
 - Register particles in ESPResSo (e.g. topology, interactions
 - Call to integrate command
 - Analysis/output

Program structure located in:

ESPRESSO/packages/mbtools

Outline

- Introduction
 - Lipid Membranes
 - Why coarse-graining
- Solvent-free CG Model
 - Why Solvent-free
 - Model
- Properties
 - Membrane Elasticity
 - Bending
 - Line Tension
- Code Implementation
- Applications
 - Vesicles
 - Protein-induced Budding
 - Lipid A-B Mixtures

Vesicles

Vesicles

- Sonicate vesicle solution:
 - Rip membranes into small pieces
- The (flat) pieces merge and become bigger
- At some point, they close up to form vesicles.
- Competition between bending rigidity and line tension.

Energetics

Diameter of Vesicles

- What do we expect:
 - $\kappa = 20k_bT \approx 80 \text{ pN nm}$
 - $\overline{\kappa} \approx -\kappa$
 - For more information of $\overline{\kappa}$, see Hu et. al.¹
 - $\gamma \approx 10 \text{pN}$

•
$$R_{pancake} = \frac{4(2\kappa + \overline{\kappa})}{\gamma} \approx \frac{4\kappa}{\gamma} \approx \frac{320 \text{ pNnm}}{10 \text{ pN}} = 32 \text{ nm}$$

¹M Hu, J. J. Briguglio, and M. Deserno. Biophys. J. **102**, 1403-1410 (2012)

Intuitive model, but physically justified?

- 36 curved caps, ~50 000 lipids
- 160 nm side-length
- Total time ~1ms
- No lateral tension
- No explicit interaction between caps

Some observations:

- Caps attract collectively
- Attractive pair-forces exist?
- No crystalline structure
- Cooperative vesiculation
- No "scaffolding"
- 50-100nm length scales
- several milliseconds

Lipid A-B Mixtures

Movies

B.J. Reynwar and M. Deserno, Biointerphases 3, FA118 (2009)

Mixtures

Stretching Modulus

I. R. Cooke and M. Deserno, J. Chem. Phys. 123, 224710 (2005)