
Simulating Soft Matter with ESPResSo, ESPResSo++

and VOTCA

ESPResSo Summer School 2013
October 7 to October 11, University of Stuttgart

Max Planck Institute
for Polymer Research

http://www.espresso-pp.de

Key Features

• ESPResSo++ is an open-source simulation

package designed to perform molecular
dynamics and monte carlo simulations of
condensed matter systems using traditional
and state-of-the-art techniques.

• Flexibility due to Python/C++ integration
• Extensibility due to object oriented design
• Easy script-guided creation of complex

topologies
• Quick incorporation of new interactions and

analysis methods
• Use of standard short- and long range

interactions: e.G. Lennard-Jones, Stillinger-
Weber, FENE, OPLS, Dihedrals, Ewald
Coulomb, etc.

• Efficient implementation of advanced
algorithms: e.G. (H-)AdResS, Parallel
Tempering, dynamic bonds, etc.

• On-the-fly analysis and visualization
• Applicable to large systems and large numbers

of CPUs due to efficient parallelisation

Advanced C++ Kernel
• Parallelization
• Time-critical

algorithms
• Data storage
• Extensible modular

design

Analysis Visualization

Python scripting
language

PyMol VMD NumPy SciPy

ESPResSo++

Outline of the talk

• Simulating a dense polymer melt (general workflow)
• Some things to know about python
• Typical ESPResSo++ python script and ESPResSo++ modules hierarchy
• System setup and basic classes
 - Some information about PMI in between
• Inside ESPReSo++ an overview of the C++ class structure
• Integrator, Interactions, Storage

• Installation of ESPResSo++
• Basic System Setup
• Simple Lennard Jones System
• Advanced Lennard Jones System

with graphical output
• Polymer Melt

Outline of the afternoon tutorial session

Snapshot of an equilibrated dense ring polymer melt,
number of chains Nc=200, chain length lc=200
particles, density ρ=0.85 [N/V3]

Example: simulating a dense polymer melt

You will have time in the afternoon tutorial session to work with this
example in more detail.

System setup

Output equilibrated
configuration

Create random
polymer chains

Warmup the
system

Equilibrate the
system

Snapshot of an equilibrated dense ring polymer melt,
number of chains Nc=200, chain length lc=200
particles, density ρ=0.85 [N/V3]

Example: simulating a dense polymer melt

The following slides will show how basic modules of ESPResSo++
can be used to setup a system for the simulation of a polymer melt.

System setup

Output equilibrated
configuration

Create random
polymer chains

Warmup the
system

Equilibrate the
system

Some (very few) things to know about Python:

• Python is an interpreted language and does not have to be compiled
• Python has advanced object oriented structures
• Python can be used interactively

There is one syntactic specialty in python (and I don't know any other
language that has this) : begin and end of a block is not marked by any
keyword or brackets but only by indentation.
(Therefore it is very important to be disciplined when indenting the lines !)
examples:

for i in range(100):

 s += i

 print s, i

or

if (sum > 100):

 print 'sum = ', sum

 sum = 0

A typical ESPResSo++ python script consists of the following

elements:

• System setup (define box, interactions, parameters, ...)

• Read in particle and topology information from a file (e.g. pdb, xyz,

GROMACS or LAMMPS) or setup a new random configuration

• Integrate Newtons equations of motion

• Analysis, trajectory files, visualization and many other things can be

done during integration

• Print final results

There is only one python script needed to reflect the workflow of a

complete project !

Python import espresso

Exten-
sions BC

RNG Ortho-
rhombicBC

esutil.
RNG

 System
compute

temperature

Verlet

List

OPLS

• Typically ESPResSo++ python

scripts start with the line:

• All ESPResSo++ modules and

classes will then be available

and are prefixed with

Python import espresso

The main ESPResSo++ modules are

(basic classes, e.g. Particle, data types like Real3D or Tensor and
the System class, ...)

(e.g. Temperature, PressureTensor, g(r), ...)
(boundary condition classes, e.g. OrthorhombicBC)

(e.g. random number generators, ...)
(e.g. VelocityVerlet, extensions like thermostats and

barostats, ...)
(e.g. LennardJones, FENE, OPLS, Tabulated, ...)

(new file I/O classes, e.g. DumpXYZ, ...)
(e.g. domain decomposition)

(old file I/O classes, e.g. writepdb, interface to other
programs like VMD, GROMACS, LAMMPS, ...)

• This hierarchy is also reflected by the directory structure of the src
(espresso) directory-tree

System setup
and

basic classes

Storage

 Inter-
 actions

BC

RNG

Python

Sy
st

e
m

 system = espresso.System()

The System class holds links to
other classes that are
necessary for most simulations:

• Random number generators
• Boundary conditions
• Storage
• Interactions

• PMI takes care of the parallelisation on the python level
• This will be explained in more detail on the next slide

CPU 1

PMI

Stora
ge

Inter-
actio

ns

BC

RNG

Sy
st

e
m

CPU 2
Stora

ge

Inter-
actio

ns

BC

RNG

Sy
st

e
m

CPU 3
Stora

ge

Inter-
actio

ns

BC

RNG

Sy
st

e
m

CPU 4
Stora

ge

Inter-
actio

ns

BC

RNG

Sy
st

e
m

Some words about parallelisation and PMI:

worker 1 worker 2 worker 3 worker 4

controller
 (distributes objects to workers and keeps track of return values)

Python module
distributes objects (transparently for the
user) to parallel threads and invokes them

(Parallel Method Invokation)

Workers communicate to each other via MPI on C++ or Python level

Storage

 Inter-
 actions

BC

RNG

Python

esutil.
RNG

Sy
st

e
m

 system.rng = espresso.esutil.RNG()

• We create a random number
generator object and connect it
to the system.

• (Remember: PMI will take care
of doing this on all the
workers.)

• Other objects, e.g. the Langevin
thermostat extension can use
the RNG of the system

• Always remember: PMI takes care of distributing the objects to
the works

• Usually this is totally transparent for the user

Storage

 Inter-
 actions

BC

RNG

Python

esutil.
RNG

Sy
st

e
m

 system.storage = espresso.bc.OrthorhombicBC(box, ...)

Ortho-
rhombicBC

• Next comes the boundary
condition object.

• This class takes care of
measuring distances

• It has information about the
size of the simulation box

• And it can create random
coordinates within the
simulation box

• Therefore it also needs a RNG

Storage

 Inter-
 actions

BC

RNG

Python

esutil.
RNG

Sy
st

e
m

 system.storage = espresso.storage.DomainDecomposition(*)

Ortho-
rhombicBC

Domain
decomposition

• The next important object that
we need to create is the
domain decomposition object

• It takes care of storing all the
particles in a multi CPU
environment

• It also handles sending around
particles between CPUs via
mpi_recv and mpi_send (we
use boost::mpi for that)

• It informs other objects (like
particle lists or bond lists) when
this happens so that they can
also update their data

Storage
Domain

decomposition

 Inter-
 actions

Exten-
sions

BC

RNG

Ortho-
rhombicBC

Python

esutil.
RNG

Sy
st

e
m

In
te

gr
at

o
r System

Velocity
Verlet

 integrator = espresso.integrator.VelocityVerlet(system)

• Another important object
we need for our daily
simulations is the
integrator

• It integrates Newtons
equations of motion with
a Velocity-Verlet type
scheme

• It also send signals to the
integrator extensions and
allows them interfere in
the scheme

Storage
Domain

decomposition

 Inter-
 actions

Exten-
sions

BC

RNG

Ortho-
rhombicBC

Python

esutil.
RNG

Sy
st

e
m

In
te

gr
at

o
r System

Velocity
Verlet

 system.storage.addParticles(particleList, *particleProperties)

Particle
1

Particle
2

Particle
N ...

particleList =
[[1, 0, pos1, 1.0],
 [2, 0, pos2, 1.0],

 .
 .
 .

 [N, 0, posN, 1.0]]

particleProperties =
 ['id', 'type', 'pos', 'mass']

• We can add some
particles now

• Each particle is
stored on one
CPU only

Storage
Domain

decomposition

 Inter-
 actions

LJ

Exten-
sions

BC

RNG

Ortho-
rhombicBC

Python

esutil.
RNG

Sy
st

e
m

In
te

gr
at

o
r System

Velocity
Verlet

Verlet

List

 system.addInteraction(interaction1)

verletlist =

 espresso.VerletList(system, cutoff)

LJpot =

 espresso.interaction.LennardJones

 (epsilon, sigma, cutoff, shift)

interaction1 = espresso.interaction.

 VerletListLennardJones(verletlist)

interaction1.setPotential

 (type1=0, type2=0, LJpot)

• Interactions consist of two parts: the
actual potential (e.g. Lennard Jones)
and the type (nonbonded=Verlet*,
bonded=Fixed*Lists)

• The system also holds a list
to all the interactions of the
simulation

Storage
Domain

decomposition

 Inter-
 actions

LJ

FENE

Exten-
sions

BC

RNG

Ortho-
rhombicBC

Python

esutil.
RNG

Sy
st

e
m

In
te

gr
at

o
r System

Velocity
Verlet

Verlet

List

Pair
List

 system.addInteraction(interaction2)

• ESPResSo++ supports many
different kinds of
interactions: 2-body bonded
and non bonded, 3-body
bonded and non bonded
(angular), 4-body bonded
(dihedrals)

Cos2

Angle

List

Storage
Domain

decomposition

 Inter-
 actions

LJ

FENE

Exten-
sions

BC

RNG

Ortho-
rhombicBC

Python

esutil.
RNG

Sy
st

e
m

In
te

gr
at

o
r System

Velocity
Verlet

Verlet

List

Pair
List

 system.addInteraction(interaction3)

• The cosine_squared is an
example of 3-body bonded
potential

• Stillinger Weber or Tersoff
are examples for 3-body
non bonded potentials that
work with 3-body Verlet
lists

Storage
Domain

decomposition

 Inter-
 actions

Exten-
sions

BC

RNG

Ortho-
rhombicBC

Python

esutil.
RNG

Sy
st

e
m

In
te

gr
at

o
r System

Langevin
Thermostat

Velocity
Verlet

 integrator.addExtension(thermostat)

Cos2

Angle

List

LJ

FENE

Verlet

List

Pair
List

 thermostat = espresso.integrator

 .LangevinThermostat

thermostat.gamma = 1.0

thermostat.temperature = 1.0

• Things like
thermostats, barostats,
external forces and
many others are
implemented as
integrator extensions

• There will be a
detailed explanation of
this later in the talk

Analysis

Storage
Domain

decomposition

 Inter-
 actions

Exten-
sions

BC

RNG

Ortho-
rhombicBC

Python

esutil.
RNG

Sy
st

e
m

In
te

gr
at

o
r System

Langevin
Thermostat

compute
temperature

compute
PressureTensor

Velocity
Verlet

 integrator.addExtension(analysis)

Cos2

Angle

List

LJ

FENE

Verlet

List

Pair
List

• Even analysis routines can be
added as extensions.

• This allows for efficient
calculation of running
averages and error bars
without leaving the C++ level

 for nsteps in range(1000)

 integrator.run(100)

 print(espresso.analysis.Temperature.compute())

 espresso.tools.pdbwrite(filename='data.pdb', system)

• Finally integrate Newtons equation of motion
 - print some analysis information during integration
• Write final configuration to PDB file

Sy
st

em

RNG

BC

Storage

Inter
actions

LJ FENE Cos2

s1 = System()

s1.rng = esutil.RNG()

s1.bc = bc.OrthorhombicBC(<args>)

s1.storage =

 storage.DomainDecomposition(<args>)

 .

 . <create particlelist>

 .

s1.storage.addParticles(*property_list,

 particle_list)

 .

 . <define interactions with parameters>

 .

s1.addInteraction(LJ)

s1.addInteraction(FENE)

s1.addInteraction(CosSq)

i1 = integrator.VelocityVerlet(s1)

 .

 . <create thermostat with parameters>

 .

i1.addExtension(langevin_thermostat)

i1.run(10000)

 Particles

Inte-
grator

Exten-
sions

 Langevin

System

Simplyfied summary

Inside ESPResSo++

• Abstract classes
• The integrator
• How integrator extensions work
• Interaction types
• Potentials
• Storage

VelocityVerlet

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Abstract classes of ESPResSo++

VelocityVerlet

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Abstract classes of ESPResSo++

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

Extension LangevinThermostat

signals signals

VelocityVerlet Integrator

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡
&
&

𝑣𝑖 & 𝑡 + ∆𝑡 2 & &= 𝑣𝑖 𝑡 &+ & ∆𝑡 2 &⋅ &𝑓𝑖 𝑡
&

𝑟𝑖 & 𝑡 + ∆𝑡 & &= 𝑟𝑖 𝑡 &+ &∆𝑡 &⋅ &𝑣𝑖 𝑡 + ∆𝑡 2
&
&

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡
&
&

𝑣𝑖 & 𝑡 + ∆𝑡 & &= 𝑣𝑖 𝑡 + ∆𝑡 2 &+& ∆𝑡 2 &⋅ &𝑓𝑖 𝑡 &&&

Init

MD
Loop

Integrator

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

LangevinThermostat

signals

VelocityVerlet Integrator

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡

&
𝑣𝑖 & 𝑡 + ∆𝑡 2 & &= 𝑣𝑖 𝑡 &+ & ∆𝑡 2 &⋅ &𝑓𝑖 𝑡

&
𝑟𝑖 & 𝑡 + ∆𝑡 & &= 𝑟𝑖 𝑡 &+ &∆𝑡 &⋅ &𝑣𝑖 𝑡 + ∆𝑡 2

&

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡
&

𝑣𝑖 & 𝑡 + ∆𝑡 & &= 𝑣𝑖 𝑡 + ∆𝑡 2 &+& ∆𝑡 2 &⋅ &𝑓𝑖 𝑡 &&&

Init

MD
Loop

signal

signal

signal

signal

signal

Extension

signals

How integrator extensions work

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

VelocityVerlet Integrator

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡

&
𝑣𝑖 & 𝑡 + ∆𝑡 2 & &= 𝑣𝑖 𝑡 &+ & ∆𝑡 2 &⋅ &𝑓𝑖 𝑡

&
𝑟𝑖 & 𝑡 + ∆𝑡 & &= 𝑟𝑖 𝑡 &+ &∆𝑡 &⋅ &𝑣𝑖 𝑡 + ∆𝑡 2

&

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡
&

𝑣𝑖 & 𝑡 + ∆𝑡 & &= 𝑣𝑖 𝑡 + ∆𝑡 2 &+& ∆𝑡 2 &⋅ &𝑓𝑖 𝑡 &&&

Init

MD
Loop

signal

signal

signal

signal

signal

+&𝑳 𝑻, 𝜸, 𝒗𝒊 𝒕 , 𝜽

+&𝑳′ 𝑻, 𝜸, 𝒗𝒊 𝒕 + ∆𝒕 𝟐 , 𝜽

Extension LangevinThermostat

signals signals

Extensions

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

VelocityVerlet Integrator

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡

&
𝑣𝑖 & 𝑡 + ∆𝑡 2 & &= 𝑣𝑖 𝑡 &+ & ∆𝑡 2 &⋅ &𝑓𝑖 𝑡

&
𝑟𝑖 & 𝑡 + ∆𝑡 & &= 𝑟𝑖 𝑡 &+ &∆𝑡 &⋅ &𝑣𝑖 𝑡 + ∆𝑡 2

&

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡
&

𝑣𝑖 & 𝑡 + ∆𝑡 & &= 𝑣𝑖 𝑡 + ∆𝑡 2 &+& ∆𝑡 2 &⋅ &𝑓𝑖 𝑡 &&&

Init

MD
Loop

signal

signal

signal

signal

signal

save positions

Extension FixPositions

signals signals

restore positions

Extensions

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

VelocityVerlet Integrator

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡

&
𝑣𝑖 & 𝑡 + ∆𝑡 2 & &= 𝑣𝑖 𝑡 &+ & ∆𝑡 2 &⋅ &𝑓𝑖 𝑡

&
𝑟𝑖 & 𝑡 + ∆𝑡 & &= 𝑟𝑖 𝑡 &+ &∆𝑡 &⋅ &𝑣𝑖 𝑡 + ∆𝑡 2

&

𝑓𝑖 & 𝑡 &&= 𝐹𝑖 𝑡
&

𝑣𝑖 & 𝑡 + ∆𝑡 & &= 𝑣𝑖 𝑡 + ∆𝑡 2 &+& ∆𝑡 2 &⋅ &𝑓𝑖 𝑡 &&&

Init

MD
Loop

signal

signal

signal

signal

signal

Extension ForceCapping

signals signals

cap forces

Extensions

VelocityVerlet

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC
Domain

Decomposition

Storage

System

Integrator

signals
signals

Extension LangevinThermo/Barostat

BerendsenThermo/Barostat

ForceCapping

(T)DPDThermostat

StochasticVelocityRescaling

Isokinetic

FixPositions

ExtForce / TDForce

AdResS

Extensions

Analysis

File I/O

VelocityVerlet

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Abstract classes

VelocityVerlet

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Interaction

VerletListInteraction
< LennardJones >

Different types of interaction:
• 2-body (pair)
• 3-body (angular)
• 4-body (dihedral)
• N-body (coulomb k-space)
• non bonded (Verlet lists)
• bonded (bond lists)

Interaction types

VelocityVerlet

BoundaryConditions

OrthorhombicBC

Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

FixedPairList

FixedTripleList

FixedQuadrupleList

VerletList

VerletListAdress

VerletListTriple

CellListAllParticles

CellListAllPairs

Interaction

VerletListInteraction
< LennardJones >

3-body 2-body 4-body N-body

Interaction types

VerletListInteraction
< LennardJones >

Interaction

VelocityVerlet

BoundaryConditions

OrthorhombicBC

Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

3-body 2-body 4-body

bonded
interaction
templates

N-body

FixedPairList

FixedTripleList

FixedQuadrupleList

non bonded
interaction
templates

VerletList

VerletListAdress

VerletListTriple

CellListAllParticles

CellListAllPairs
Interaction types have
to be combined with
potentials

Interaction types

VelocityVerlet

BoundaryConditions

OrthorhombicBC

Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Stillinger
Weber

Tabulated
Angular

Lennard
Jones

Tabulated
Dihedral

Tabulated FENE

Ewald
KSpace

Angular
Cosine

Angular
Harmonic Harmonic

Morse

OPLS

Reaction
FieldGen

Cosine
Squared

Lennard
JonesCap

Soft
Cosine

Ewald
RSpace

3-body 2-body 4-body

bonded
interaction
templates

N-body

FixedPairList

FixedTripleList

FixedQuadrupleList

non bonded
interaction
templates

VerletList

VerletListAdress

VerletListTriple

CellListAllParticles

CellListAllPairs

Potentials

VelocityVerlet

BoundaryConditions

OrthorhombicBC

Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Stillinger
Weber

Tabulated
Angular

Lennard
Jones

Tabulated
Dihedral

Tabulated FENE

Ewald
KSpace

Angular
Cosine

Angular
Harmonic Harmonic

Morse

OPLS

Reaction
FieldGen

Cosine
Squared

Lennard
JonesCap

Soft
Cosine

Ewald
RSpace

3-body 2-body 4-body

bonded
interaction
templates

N-body

FixedPairList

FixedTripleList

FixedQuadrupleList

non bonded
interaction
templates

VerletList

VerletListAdress

VerletListTriple

CellListAllParticles

CellListAllPairs

typedef class VerletListInteractionTemplate
< LennardJones > VerletListLennardJones

C++ code:

Potentials

VelocityVerlet

BoundaryConditions

OrthorhombicBC

Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Stillinger
Weber

Tabulated
Angular

Lennard
Jones

Tabulated
Dihedral

Tabulated FENE

Ewald
KSpace

Angular
Cosine

Angular
Harmonic Harmonic

Morse

OPLS

Reaction
FieldGen

Cosine
Squared

Lennard
JonesCap

Soft
Cosine

Ewald
RSpace

3-body 2-body 4-body

bonded
interaction
templates

N-body

FixedPairList

FixedTripleList

FixedQuadrupleList

non bonded
interaction
templates

VerletList

VerletListAdress

VerletListTriple

CellListAllParticles

CellListAllPairs

typedef class FixedPairListInteractionTemplate
< LennardJones > FixedPairListLennardJones

C++ code:

Potentials

VelocityVerlet

BoundaryConditions

OrthorhombicBC

Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Stillinger
Weber

Tabulated
Angular

Lennard
Jones

Tabulated
Dihedral

Tabulated FENE

Ewald
KSpace

Angular
Cosine

Angular
Harmonic Harmonic

Morse

OPLS

Reaction
FieldGen

Cosine
Squared

Lennard
JonesCap

Soft
Cosine

Ewald
RSpace

3-body 2-body 4-body

bonded
interaction
templates

N-body

FixedPairList

FixedTripleList

FixedQuadrupleList

non bonded
interaction
templates

VerletList

VerletListAdress

VerletListTriple

CellListAllParticles

CellListAllPairs

typedef class VerletListTripleInteractionTemplate
< StillingerWeberTripleTerm > VerletListStillingerWeberTripleTerm

C++ code:

Potentials

VelocityVerlet

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC Domain
Decomposition

Storage

System

Integrator

Extension LangevinThermostat

signals signals

Abstract classes

VelocityVerlet

Interaction

VerletListInteraction
< LennardJones >

BoundaryConditions

OrthorhombicBC

System

Integrator

Extension LangevinThermostat

signals signals

Domain Decomposition

Storage

FixedPairList

FixedTripleList

FixedQuadrupleList

VerletList

VerletListAdress

VerletListTriple signal
onParticlesChanged

signal
beforeSendParticles

signal
afterRecvParticles

Particle lists for different interactions are updated on
signals from DomainDecomposition

Storage

• Storage takes care of parallelisation
• Distributes particles to the MPI tasks
• Updates topology information on all MPI tasks
• Sends and receives communication buffers

• Thomas Brandes (SCAI)

• Dirk Reith (SCAI)

• Axel Arnold (ICP)

• Olaf Lenz (ICP)

• Jonathan Halverson (BNL, USA)

• Victor Ruehle (Cambridge, UK)

• Christoph Junghans (LANL, USA)

Current developers:

Former developers:

• Torsten Stuehn (MPIP)

• Vitalii Starchenko (MPIP)

• Sebastian Fritsch (MPIP)

• Konstantin Koschke (MPIP)

• Livia Moreira (MPIP)

• Raffaello Potestio (MPIP)

• Karsten Kreis (MPIP)

• Stas Bevc (NIC, Slovenia)

ESPResSo++ Team:

ESPResSo++ CECAM Tutorial

Project website:

www.espresso-pp.de

Thank you for your attention !

