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Coarse-Graining

 All-Atom Models
 Model all atoms and their interactions with semi-quantitative parameters
 Only small systems and short times can be simulated

 Coarse-Grained Models 
 Only model “important” degrees of freedom
 Allows for much larger time and length scales

Quantum

All-Atom

Molecular

Soft Fluid
Time scale

Length scale

Finite
Elements

Coarse-Graining
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Why yet another Simulation Package?

 Coarse-grained Bead-spring models: 
Combine several atoms into a single bead

 Often combined with other methods
 Special interactions (DPD, Gay-Berne ellipsoids, ...)
 Special integrators (MCPD, Hybrid MC/MD, ...)
 Combined with lattice models (Lattice-Boltzmann, MEMD, ...)
 Uncommon simulation protocols (Simulated annealing, Parallel tempering, …)
 Special constraints (Walls, Pores, …)

 Standard MD simulation packages (GROMACS, NAMD, AMBER, …) 
are not flexible enough to deal with these models

Package must be flexible!
 In research, new methods are developed
 Building new methods into highly optimized code (GROMACS, NAMD, 

AMBER, …) is very hard

Package must be extensible!
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Philosophy

 ES is intended as a research tool and a production platform
 ES provides the methods for coarse-grained simulations
 However, an understanding of the methods is required to be able to use 

ESPResSo
 ES can not check whether what you do makes sense!

Golden Rules

1. ESPResSo can not be used as a black box

2. ESPResSo does not do the physics for you
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Methods

 Integrators and ensembles: Velocity-Verlet algorithm (NVE), Langevin 
thermostat (NVT), Barostat by Dünweg (NPT), Generalized Hybrid Monte-
Carlo, Quarternion integrator for non-spherical particles or point-like 
dipoles, ...

 Nonbonded interactions: Lennard-Jones, Gay-Berne, Buckingham,, …
 Bonded interactions: harmonic, FENE, tabulated, bond-angle interaction, 

dihedral interaction, ...
 Long-range interactions: for electrostatics: P³M, MMM1D, MMM2D, Ewald, 

ELC and MEMD; for point-like dipoles: dipolar P³M, ScaFaCoS (FMM, ...), ...
 Hydrodynamic interactions: DPD, Lattice-Boltzmann fluid (on GPU) 

coupled to particle simulation
 Constraints: Particles can be fixed in any directions; walls, pores, spheres...
 Analysis: energy components, pressure tensor, forces, distribution 

functions, structure factors, polymer-specific analysis functions (radius 
of gyration, ...), output to VMD

 ...and it is continuously growing...
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Availability

 Free, open-source
 Source code hosted at GNU Savannah

(not a GNU core project, though)
 GNU General Public License (GPLv3)

 Code may be freely downloaded, modified 
and redistributed

 Provided that the GPL is kept
 Portable: POSIX, Windows, Mac OS X
 Distribution packages exist for

 Gentoo Linux (Christoph Junghans)
 Fedora Linux (Thomas Spura; in progress)
 … anybody interested in packaging for 

other distributions?

https://savannah.nongnu.org
/projects/espressomd/
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Distribution

(from Web of Science, including self-citations)

 163 Citations of the 2006 article (Web of Knowledge)
 Used by ~20 scientific working groups

Citations per year
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Impact

2007

2011
2010
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Code

From Ohloh:
https://www.ohloh.net/p/ESPResSo_MD

 5,600 commits from 66 contributors
 ~ 137,000 lines of code
 Estimate: ~34 person years, ~1.9M$ cost

https://www.ohloh.net/p/ESPResSo_MD
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Web Resources

Home page
http://espressomd.org

 Hosted at ICP
 Central resource for users
 Downloads
 Documentation → next slide
 Community and Support

 (Link to) Bug tracker
 (Link to) Mailing lists
 (Link to) Wiki

 Developer's Zone (in the wiki)
 Developer's docs
 (Link to) Savannah project
 (Link to) Source code repository
 (Link to) Build server

Savannah Project Page
https://savannah.nongnu.org/projects/espressomd/

 Hosted at GNU Savannah servers
 Download area

 Release tarballs and NEWS
 Mailing list espresso-users@nongnu.org

 Only mailings from members are 
accepted

 Bug tracker
 Report bugs in releases!

 Mostly intended for Developers
 Mailing list espresso-devel@nongnu.org
 News
 Source code repository
 Task manager
 Patch manager

http://espressomd.org/
https://savannah.nongnu.org/projects/espressomd/
mailto:espresso-users@nongnu.org
mailto:espresso-devel@nongnu.org
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Architecture

 Simulation core 
 Written in C with some C++ 

enhancements
 MPI parallelized
 Optimized

 Control layer
 Simulation core is controlled via the 

scripting language Tcl
 High-level Tcl commands to control 

the simulation and analyze the 
system

 A simulation is defined by an 
“ESPResSo script”

 Tcl script is not executed in parallel!

.

.
setmd box_l 10.0 10.0 10.0
integrate 1000

# compute kinetic energy
set e_kin \
  [analyze energy kinetic]
.
.

Example ESPResSo script

ESPResSo 
script

Master

CPU 0

Tcl

C

MPI

Tcl Interface

Slave

CPU 1

C
Slave

CPU 2

C

MPI
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Tcl
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History

 “Tool command language”, pronounce “tickle”
 John Ousterhout, Berkley, 1988
 Originally invented for GUI programming (Tcl/Tk)
 Interpreted, procedural scripting language
 Motto: “Radically simple”

 Simple syntax
 All operations are commands
 Including control structures (i.e. loops, conditionals)

 No types: All data are strings
 Dynamic: new procedures can be (re-)defined easily

 Simple C-API
 Free, open-source (BSD license)
 Current version 8.6.1 (20 Sep 2013)
 ...currently seem to regain some drive!
 Some programs use Tcl/Tk, e.g. VMD and NAMD
 … but most are slowly switching to Python... 

http://www.tcl.tk

John Ousterhout

http://www.tcl.tk/
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Language Basics

 Standard interpreter
 tclsh, wish (with Tk)
 Can be used interactively

 Improved console: tkcon
 Getting help on Tcl

 Hompage http://www.tcl.tk
 Unix manpages (e.g. man n open)

 Comment char: #
 Command to print to screen: puts
 General syntax

 First word in a line is a command
 Rest are arguments
 Several commands in a line with ;

 "" or {} can be used to group arguments
 Continuation lines with “\” at the end of 

line

http://www.tcl.tk/
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Variables, Substitution and Grouping

 Variables are set via
set varName ?value?
 What? No “a=13”?
 Remember? Everything is a command!

 $varName is substituted for variable 
value

 Unknown variables are reported
 Argument grouping via ""

 Substitution works
 Backslash-sequences work 

(\n, \t, …)
 Use for strings

 Argument grouping via {}
 No substitution
 No backslash-sequences
 Use for code blocks
 Can stretch multiple lines!
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Control Structures

 Control structures are just 
commands!

 Conditional
if expr1 ?then? body1 
elseif expr2 ?then? body2
elseif ... 
?else? ?bodyN?
 Keywords then and else are 

optional
 Loops
while test body
for start test next body
 break breaks a loop

 Mind the spaces between the 
arguments!
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Evaluating Expressions and Nested Commands

 Mathematical expressions can be 
computed using the command
expr ?expression?
 Expressions are mostly like C

 Grouping via []
 Equivalent to shell backticks ``
 Executed as a nested command
 Variable substitution works
 Output is substituted

 “Everything is a string”
 Numbers have to be transformed to 

and from a string
 Slow numerics in Tcl!
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Adding New Commands

 Define a new command via
proc name args body
 Creates a new command with the 

given name
 args defines the names of the 

arguments
 In the body, local variables exist for 

each argument
 The return command defines the 

return value of the command
 It is possible to specify default 

arguments 
 Variables are local if they are not 

declared global
 For further reference: uplevel and 
upvar to define control structures
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Lists

 { 1 2 3 } is a list
 A list is a string!
 Nested lists
{ { 1 2 3 } { 4 5 6 } }

 Commands
 Access single elements with

lindex list ?index...?
 Get number of elements with

llength list
 Append elements to a list with

lappend varname ?value...?
 Loop over elements with

foreach varname list body
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File I/O

 Open a file with
open filename access
 Returns a channelId
 access is a letter, e.g. “r” for reading, 

“w” for writing
 If filename starts with “|”, open a 

pipe to a command
 Write to a channel with 
puts channelId

 Read from the channel with 
gets channelId

 Close file with 
close channelId
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… and there is more

 Arrays (Hashmap) man n array
 Namespaces man n namespace
 String commands man n string
 Regular expressions man n regexp
 Packages man n package
 GUIs via Tk
 Etc.
 …but that would be too much for now...
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Hands-On: Tcl
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ESPResSo
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User Documentation

 User's Guide
 PDF document
 In release package (doc/ug/ug.pdf)

 Off-line
 Matches the release

 On web site (from build server)
 Up-to-date
 Contains ToDo-Boxes

 Outline
 Introduction
 First steps: Quick start
 Rest: Reference manual

 FAQ (on home page)
 Not very complete
 Please contribute!

 Mailing list archive
 Bug tracker
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Getting Help

 RTFM!
 FAQ
 User's Guide
 Mailing list archives

 Use Mailing List
 Include version, OS, features
 Also send replies to the list

 If you send huge files, better provide a link
 In a long, detailed discussion you can just 

send a summary at the end

 Please remember: the developers are not 
paid for replying!

 Please do not write to developers 
personally

 All mailings are archived so others can 
benefit

 Mailing list reaches everybody
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Requirements

 C++-Compiler (GNU CC is best tested)
 Bourne shell, GNU make
 Tcl (Including headers / devel package!)
 Optional

 FFTW 
 Including headers
 Required for P3M

 MPI
 e.g. OpenMPI, MPICH
 Including headers
 Required for parallel execution
 Useful to know how to use it

 CUDA
 For GPU code
 … it is getting more all the time
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Compiling

 Necessary evil
 Few binary packages exist
 For optimal performance, 

recompilation is necessary
 Typically 3 steps

 Configure code configure
 Use --help to get options
 Use CPPFLAGS and LDFLAGS when 

libraries are installed non-standard
 Logfile config.log contains additional 

information

 Compile code make
 Use -j np to compile in parallel

 Run testsuite make check
 Use processors=”1 2” to specify 

the numbers of tasks

 Installation is usually not required
 Separate source and build dir

 The source dir is where the source 
code resides

 The build dir is where all files 
created by the compilation are 
created

 No file in the source dir is modified 
by compilation

 Call configure from the build dir
cd $builddir; 
$srcdir/configure
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Activating and Deactivating Features

 ESPResSo supports various 
different features

 Not all features are compiled in
 To check, call code_info
 Create file myconfig.hpp in build 

or source dir to change the default 
set of features

 Use minimal set of features for 
optimal performance

 The term “feature” is probably not 
well chosen
 The code has a lot of features that 

do not have a compiler switch
 Goal: remove all features

#define PARTIAL_PERIODIC

#define ELECTROSTATICS

#define DIPOLES

#define ROTATION

#define ROTATIONAL_INERTIA

#define MDLC

#define EXTERNAL_FORCES

#define CONSTRAINTS

#define MASS

#define EXCLUSIONS

#define COMFORCE

#define COMFIXED

#define MOLFORCES

#define MODES

#define BOND_VIRTUAL

Example myconfig.hpp
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Hands-On: Compiling ESPResSo
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Writing an ESPResSo Script

 Example files: lj.tcl and 
stretched_polymer.tcl
 lj.tcl: Lennard-Jones fluid
 stretched_polymer.tcl: 

Stretched polymer
 Outline

 Set up the system
 Set up the particles
 Set up the interactions
 Running the simulation

 Warmup integration
 Main integration

 Analysis
 Sections correspond roughly to 

chapters in UG
 Detailed command syntax can be 

found in UG

Snapshot of the LJ system

Schema of the stretched polymer
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Setting Up the System: Global Variables

 Set global variables with setmd varname value
 e.g. Box size, Periodicity, Time step, Skin size, Cell size, …
 Many are set to sensible defaults
 Get global variable with setmd varname
 Many commands can be used without argument to get information

# define the system size
setmd box_l $box_size $box_size $box_size

# set up the integrator time step
setmd time_step 0.01

# the skin has no effect on the result, only on the speed
setmd skin 0.4

# uncomment the following to output the box size
#puts [setmd box_l]
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Setting Up the System: Thermostat

 Command thermostat
 Misnomer: used to set ensemble (e.g. Barostat)
 Turn on Langevin thermostat

thermostat langevin temperature gamma
 Turn off thermostat    thermostat off
 Other “thermostats”

 npt_isotropic (NPT)
 Generalized Hybrid Monte-Carlo (GHMC; NPT and more)
 Dissipative Partice Dynamics (DPD)

# set up the thermostat
set langevin_gamma 1.0
thermostat langevin $temperature $langevin_gamma
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Setting Up the System: More

 nemd: “Non-equilibrium MD”: special method for creating a shear flow
 cellsystem: Changing the cell system

 Turn on Domain decomposition (default)
 Turn off Verlet lists
 Turn off Cell lists (nsquare)
 Use “layered” system (only for MMM2D)

 adress: Turn on ADResS (better use ESPResSo++)
 cuda: Set up CUDA device
 on_collision: Turn on collision detection

 Generate a bond when two particles get close
 reactions: Turn on reactions

 Change the type of a particle when it is close to a catalysator
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Setting Up Particles

 Create a single particle: part pid arguments 
 pid specifies a numeric id
 Holes in pid order cost memory

 Possible arguments: position (required in first call), velocity, charge, mass, type
 Create bonds to other particles (bond)
 Fix particle in one or more directions (fix)
 Apply external force to particle (ext_force)
 Set individual temperature (feature LANGEVIN_PER_PARTICLE)
 Delete a particle (delete)
 Get particle properties part print arguments

# generate $n_part particles at random positions
for {set i 0} { $i < $n_part } {incr i} {
    set x [expr $box_size*[t_random]]
    set y [expr $box_size*[t_random]]
    set z [expr $box_size*[t_random]]
    part $i pos $x $y $z type 0
}
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Oriented Particles, Particle groups, Constraints

 Feature ROTATION
 Particles can be oriented

 GB-ellispoids 
(coarse-grained liquid crystals)

 Directional Lennard-Jones
 Point-like dipoles

 Quarternion integrator
 Roughly 30% slower!

 Tcl commands to create many 
particles at once
 Polymer polymer
 Counterions counterions
 Salt salt
 Diamond polymer networks

diamond
 Icosaeder icosaeder
 Copy existing particles 

copy_particles
 Extended objects (“Constraints”)
constraint
 Walls, Spheres, Cylinders, Pores, 

Rods, Rhomboid, Planes
 External magnetic field
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Virtual Sites

 Virtual sites are particles that are not propagated by themselves
 The position depends on the position of other particles (reference particles)
 Forces acting on the virtual sites are transferred to the reference particles
 Create virtual sites with part
 Feature VIRTUAL_SITES_COM:

Virtual site in the center-of-mass of other (non-virtual) particles
 Feature VIRTUAL_SITES_RELATIVE: 

Virtual sites in a position relative to a (non-virtual) reference particle
 Allows to create rigid arrangements of particles 

(e.g. raspberry model, rods, …) 
 Requires ROTATION
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File I/O and Visualization

 No simple “save state” command!
What should be saved? What 
comprises the state of the simulation?
 Particle positions, Box size
 Bonds? Particle Types? Interactions? 
 RNG state? Tcl variables? 
 “Position” in the Tcl code?

 No simple checkpointing!
 Blockfile format

 Allows to write specified blocks of 
information:
blockfile chan write particles

 ESPResSo can read these blocks: 
blockfile chan read auto

 ES defines different blocks 
(particles, bonds, interactions)

 Jump into the main loop needs to be 
done manually

 Visualize best with VMD
 Off-line

 Recommended: Create VTF files
 writevsf to output the structure 

into the VTF file
 writevcf to output a configuration 

into the VTF file
 Can also create PSF and PDB

 On-line
 VMD has a protocol for on-line 

visualization
 In general, off-line is more useful
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Hands-On: First steps and Visualization
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Setting Up Interactions

 Non-bonded Short-range Interactions
 Work between particle types
 Lennard-Jones, Morse, Buckingham, 

Smooth-step (DPD), …
 Tabulated

 Bonded interactions
 Work between two (or more) specific 

particles (can be set in part)
 Have a bondid
 Bond-length 2-body interaction: 

Harmonic, FENE, …
 Bond-angle 3-body interaction: 

Harmonic, Cosine, …
 Dihedral 4-body interaction
 2-body interactions can be made rigid

 Not well-tested

 Long-range Interactions
 Electrostatics
 Magnetostatics (point-like dipoles)
 Hydrodynamic interactions
 → next days

 No force fields built in!

set lj_epsilon 1.0
set lj_sigma 1.0
set lj_cutoff 2.5
inter 0 0 lennard-jones \
  $lj_epsilon $lj_sigma \
  $lj_cutoff
puts "Interactions:\n[inter]"
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Exclusions, Dynamic Bonding

 Often, neighboring particles in a 
chain should not interact via non-
bonded interactions

 Variant 1:
Bonded subtracted LJ potential 
lj_subst

 Variant 2:
Exclusions (Feature EXCLUSIONS)
 Explicitly exclude interactions 

between particles
part exclude

 Automatically exclude interactions of 
bonded particles 
part auto_exclusions

 collision_on: 
Create bonds between particles 
when they come close

 Useful e.g. for Diffusion-limited 
aggregation
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Running the simulation

 Main integrator: Velocity Verlet
 Do a number of integration steps: integrate steps
 Use integrate 0 to update the forces or positions of virtual sites
 Warmup integration

 Cap the maximal force: inter ljforcecap F_max
 Prevents overlapping particles and very high forces
 Do steps until the large forces disappear

 Main integration
 Switching between Tcl and C has an overhead
 Do as many steps in a single integrate command

 Advanced commands for integration
 Parallel tempering
 Metadynamics for { set i 0 } { $i < 100 } { incr i } {

    integrate 1000
    .
    .
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Analysis in Tcl and in the core

 Analysis can be done in Tcl itself
 Use part print to get particle 

positions, velocities, etc.
 Allows for anything you can think of
 … but maybe slow

 slow numerics in Tcl
 not parallel

 analyze: predefined observables
 Implemented in C/C++, possibly in 

parallel
 Initialized from Tcl
 Many different observables

 Energies, pressures, stress tensor…
 Minimal distances, RDF, structure 

factor, …
 Polymer observables: end-to-end 

distance, radius of gyration, …

 Commands to analyze several 
configurations
 analyze append: Store 

configuration
 analyze configs: Retreive 

stored configurations
 Some analysis commands can 

handle stored configs (e.g. analyze 
<rdf>)

 “Analysis in the core”
 Allows to turn on some 

measurements during run of 
integrate

 Useful e.g. for MSD
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Hands-On: The rest
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