
h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

Introduction to ESPResSo and Tcl

Olaf Lenz
Institut für Computerphysik, Universität Stuttgart

Stuttgart, Germany

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

2/43IntroductionOlaf Lenz

Coarse-Graining

 All-Atom Models
 Model all atoms and their interactions with semi-quantitative parameters
 Only small systems and short times can be simulated

 Coarse-Grained Models
 Only model “important” degrees of freedom
 Allows for much larger time and length scales

Quantum

All-Atom

Molecular

Soft Fluid
Time scale

Length scale

Finite
Elements

Coarse-Graining

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

3/43IntroductionOlaf Lenz

Why yet another Simulation Package?

 Coarse-grained Bead-spring models:
Combine several atoms into a single bead

 Often combined with other methods
 Special interactions (DPD, Gay-Berne ellipsoids, ...)
 Special integrators (MCPD, Hybrid MC/MD, ...)
 Combined with lattice models (Lattice-Boltzmann, MEMD, ...)
 Uncommon simulation protocols (Simulated annealing, Parallel tempering, …)
 Special constraints (Walls, Pores, …)

 Standard MD simulation packages (GROMACS, NAMD, AMBER, …)
are not flexible enough to deal with these models

Package must be flexible!
 In research, new methods are developed
 Building new methods into highly optimized code (GROMACS, NAMD,

AMBER, …) is very hard

Package must be extensible!

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

4/43IntroductionOlaf Lenz

Philosophy

 ES is intended as a research tool and a production platform
 ES provides the methods for coarse-grained simulations
 However, an understanding of the methods is required to be able to use

ESPResSo
 ES can not check whether what you do makes sense!

Golden Rules

1. ESPResSo can not be used as a black box

2. ESPResSo does not do the physics for you

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

5/43IntroductionOlaf Lenz

Methods

 Integrators and ensembles: Velocity-Verlet algorithm (NVE), Langevin
thermostat (NVT), Barostat by Dünweg (NPT), Generalized Hybrid Monte-
Carlo, Quarternion integrator for non-spherical particles or point-like
dipoles, ...

 Nonbonded interactions: Lennard-Jones, Gay-Berne, Buckingham,, …
 Bonded interactions: harmonic, FENE, tabulated, bond-angle interaction,

dihedral interaction, ...
 Long-range interactions: for electrostatics: P³M, MMM1D, MMM2D, Ewald,

ELC and MEMD; for point-like dipoles: dipolar P³M, ScaFaCoS (FMM, ...), ...
 Hydrodynamic interactions: DPD, Lattice-Boltzmann fluid (on GPU)

coupled to particle simulation
 Constraints: Particles can be fixed in any directions; walls, pores, spheres...
 Analysis: energy components, pressure tensor, forces, distribution

functions, structure factors, polymer-specific analysis functions (radius
of gyration, ...), output to VMD

 ...and it is continuously growing...

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

6/43IntroductionOlaf Lenz

Availability

 Free, open-source
 Source code hosted at GNU Savannah

(not a GNU core project, though)
 GNU General Public License (GPLv3)

 Code may be freely downloaded, modified
and redistributed

 Provided that the GPL is kept
 Portable: POSIX, Windows, Mac OS X
 Distribution packages exist for

 Gentoo Linux (Christoph Junghans)
 Fedora Linux (Thomas Spura; in progress)
 … anybody interested in packaging for

other distributions?

https://savannah.nongnu.org
/projects/espressomd/

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

7/43IntroductionOlaf Lenz

Distribution

(from Web of Science, including self-citations)

 163 Citations of the 2006 article (Web of Knowledge)
 Used by ~20 scientific working groups

Citations per year

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

8/43IntroductionOlaf Lenz

Impact

2007

2011
2010

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

9/43IntroductionOlaf Lenz

Code

From Ohloh:
https://www.ohloh.net/p/ESPResSo_MD

 5,600 commits from 66 contributors
 ~ 137,000 lines of code
 Estimate: ~34 person years, ~1.9M$ cost

https://www.ohloh.net/p/ESPResSo_MD

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

10/43IntroductionOlaf Lenz

Web Resources

Home page
http://espressomd.org

 Hosted at ICP
 Central resource for users
 Downloads
 Documentation → next slide
 Community and Support

 (Link to) Bug tracker
 (Link to) Mailing lists
 (Link to) Wiki

 Developer's Zone (in the wiki)
 Developer's docs
 (Link to) Savannah project
 (Link to) Source code repository
 (Link to) Build server

Savannah Project Page
https://savannah.nongnu.org/projects/espressomd/

 Hosted at GNU Savannah servers
 Download area

 Release tarballs and NEWS
 Mailing list espresso-users@nongnu.org

 Only mailings from members are
accepted

 Bug tracker
 Report bugs in releases!

 Mostly intended for Developers
 Mailing list espresso-devel@nongnu.org
 News
 Source code repository
 Task manager
 Patch manager

http://espressomd.org/
https://savannah.nongnu.org/projects/espressomd/
mailto:espresso-users@nongnu.org
mailto:espresso-devel@nongnu.org

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

11/43IntroductionOlaf Lenz

Architecture

 Simulation core
 Written in C with some C++

enhancements
 MPI parallelized
 Optimized

 Control layer
 Simulation core is controlled via the

scripting language Tcl
 High-level Tcl commands to control

the simulation and analyze the
system

 A simulation is defined by an
“ESPResSo script”

 Tcl script is not executed in parallel!

.

.
setmd box_l 10.0 10.0 10.0
integrate 1000

compute kinetic energy
set e_kin \
 [analyze energy kinetic]
.
.

Example ESPResSo script

ESPResSo
script

Master

CPU 0

Tcl

C

MPI

Tcl Interface

Slave

CPU 1

C
Slave

CPU 2

C

MPI

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

12/43IntroductionOlaf Lenz

Tcl

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

13/43IntroductionOlaf Lenz

History

 “Tool command language”, pronounce “tickle”
 John Ousterhout, Berkley, 1988
 Originally invented for GUI programming (Tcl/Tk)
 Interpreted, procedural scripting language
 Motto: “Radically simple”

 Simple syntax
 All operations are commands
 Including control structures (i.e. loops, conditionals)

 No types: All data are strings
 Dynamic: new procedures can be (re-)defined easily

 Simple C-API
 Free, open-source (BSD license)
 Current version 8.6.1 (20 Sep 2013)
 ...currently seem to regain some drive!
 Some programs use Tcl/Tk, e.g. VMD and NAMD
 … but most are slowly switching to Python...

http://www.tcl.tk

John Ousterhout

http://www.tcl.tk/

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

14/43IntroductionOlaf Lenz

Language Basics

 Standard interpreter
 tclsh, wish (with Tk)
 Can be used interactively

 Improved console: tkcon
 Getting help on Tcl

 Hompage http://www.tcl.tk
 Unix manpages (e.g. man n open)

 Comment char: #
 Command to print to screen: puts
 General syntax

 First word in a line is a command
 Rest are arguments
 Several commands in a line with ;

 "" or {} can be used to group arguments
 Continuation lines with “\” at the end of

line

http://www.tcl.tk/

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

15/43IntroductionOlaf Lenz

Variables, Substitution and Grouping

 Variables are set via
set varName ?value?
 What? No “a=13”?
 Remember? Everything is a command!

 $varName is substituted for variable
value

 Unknown variables are reported
 Argument grouping via ""

 Substitution works
 Backslash-sequences work

(\n, \t, …)
 Use for strings

 Argument grouping via {}
 No substitution
 No backslash-sequences
 Use for code blocks
 Can stretch multiple lines!

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

16/43IntroductionOlaf Lenz

Control Structures

 Control structures are just
commands!

 Conditional
if expr1 ?then? body1
elseif expr2 ?then? body2
elseif ...
?else? ?bodyN?
 Keywords then and else are

optional
 Loops
while test body
for start test next body
 break breaks a loop

 Mind the spaces between the
arguments!

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

17/43IntroductionOlaf Lenz

Evaluating Expressions and Nested Commands

 Mathematical expressions can be
computed using the command
expr ?expression?
 Expressions are mostly like C

 Grouping via []
 Equivalent to shell backticks ``
 Executed as a nested command
 Variable substitution works
 Output is substituted

 “Everything is a string”
 Numbers have to be transformed to

and from a string
 Slow numerics in Tcl!

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

18/43IntroductionOlaf Lenz

Adding New Commands

 Define a new command via
proc name args body
 Creates a new command with the

given name
 args defines the names of the

arguments
 In the body, local variables exist for

each argument
 The return command defines the

return value of the command
 It is possible to specify default

arguments
 Variables are local if they are not

declared global
 For further reference: uplevel and
upvar to define control structures

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

19/43IntroductionOlaf Lenz

Lists

 { 1 2 3 } is a list
 A list is a string!
 Nested lists
{ { 1 2 3 } { 4 5 6 } }

 Commands
 Access single elements with

lindex list ?index...?
 Get number of elements with

llength list
 Append elements to a list with

lappend varname ?value...?
 Loop over elements with

foreach varname list body

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

20/43IntroductionOlaf Lenz

File I/O

 Open a file with
open filename access
 Returns a channelId
 access is a letter, e.g. “r” for reading,

“w” for writing
 If filename starts with “|”, open a

pipe to a command
 Write to a channel with
puts channelId

 Read from the channel with
gets channelId

 Close file with
close channelId

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

21/43IntroductionOlaf Lenz

… and there is more

 Arrays (Hashmap) man n array
 Namespaces man n namespace
 String commands man n string
 Regular expressions man n regexp
 Packages man n package
 GUIs via Tk
 Etc.
 …but that would be too much for now...

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

22/43IntroductionOlaf Lenz

Hands-On: Tcl

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

23/43IntroductionOlaf Lenz

ESPResSo

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

24/43IntroductionOlaf Lenz

User Documentation

 User's Guide
 PDF document
 In release package (doc/ug/ug.pdf)

 Off-line
 Matches the release

 On web site (from build server)
 Up-to-date
 Contains ToDo-Boxes

 Outline
 Introduction
 First steps: Quick start
 Rest: Reference manual

 FAQ (on home page)
 Not very complete
 Please contribute!

 Mailing list archive
 Bug tracker

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

25/43IntroductionOlaf Lenz

Getting Help

 RTFM!
 FAQ
 User's Guide
 Mailing list archives

 Use Mailing List
 Include version, OS, features
 Also send replies to the list

 If you send huge files, better provide a link
 In a long, detailed discussion you can just

send a summary at the end

 Please remember: the developers are not
paid for replying!

 Please do not write to developers
personally

 All mailings are archived so others can
benefit

 Mailing list reaches everybody

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

26/43IntroductionOlaf Lenz

Requirements

 C++-Compiler (GNU CC is best tested)
 Bourne shell, GNU make
 Tcl (Including headers / devel package!)
 Optional

 FFTW
 Including headers
 Required for P3M

 MPI
 e.g. OpenMPI, MPICH
 Including headers
 Required for parallel execution
 Useful to know how to use it

 CUDA
 For GPU code
 … it is getting more all the time

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

27/43IntroductionOlaf Lenz

Compiling

 Necessary evil
 Few binary packages exist
 For optimal performance,

recompilation is necessary
 Typically 3 steps

 Configure code configure
 Use --help to get options
 Use CPPFLAGS and LDFLAGS when

libraries are installed non-standard
 Logfile config.log contains additional

information

 Compile code make
 Use -j np to compile in parallel

 Run testsuite make check
 Use processors=”1 2” to specify

the numbers of tasks

 Installation is usually not required
 Separate source and build dir

 The source dir is where the source
code resides

 The build dir is where all files
created by the compilation are
created

 No file in the source dir is modified
by compilation

 Call configure from the build dir
cd $builddir;
$srcdir/configure

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

28/43IntroductionOlaf Lenz

Activating and Deactivating Features

 ESPResSo supports various
different features

 Not all features are compiled in
 To check, call code_info
 Create file myconfig.hpp in build

or source dir to change the default
set of features

 Use minimal set of features for
optimal performance

 The term “feature” is probably not
well chosen
 The code has a lot of features that

do not have a compiler switch
 Goal: remove all features

#define PARTIAL_PERIODIC

#define ELECTROSTATICS

#define DIPOLES

#define ROTATION

#define ROTATIONAL_INERTIA

#define MDLC

#define EXTERNAL_FORCES

#define CONSTRAINTS

#define MASS

#define EXCLUSIONS

#define COMFORCE

#define COMFIXED

#define MOLFORCES

#define MODES

#define BOND_VIRTUAL

Example myconfig.hpp

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

29/43IntroductionOlaf Lenz

Hands-On: Compiling ESPResSo

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

30/43IntroductionOlaf Lenz

Writing an ESPResSo Script

 Example files: lj.tcl and
stretched_polymer.tcl
 lj.tcl: Lennard-Jones fluid
 stretched_polymer.tcl:

Stretched polymer
 Outline

 Set up the system
 Set up the particles
 Set up the interactions
 Running the simulation

 Warmup integration
 Main integration

 Analysis
 Sections correspond roughly to

chapters in UG
 Detailed command syntax can be

found in UG

Snapshot of the LJ system

Schema of the stretched polymer

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

31/43IntroductionOlaf Lenz

Setting Up the System: Global Variables

 Set global variables with setmd varname value
 e.g. Box size, Periodicity, Time step, Skin size, Cell size, …
 Many are set to sensible defaults
 Get global variable with setmd varname
 Many commands can be used without argument to get information

define the system size
setmd box_l $box_size $box_size $box_size

set up the integrator time step
setmd time_step 0.01

the skin has no effect on the result, only on the speed
setmd skin 0.4

uncomment the following to output the box size
#puts [setmd box_l]

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

32/43IntroductionOlaf Lenz

Setting Up the System: Thermostat

 Command thermostat
 Misnomer: used to set ensemble (e.g. Barostat)
 Turn on Langevin thermostat

thermostat langevin temperature gamma
 Turn off thermostat thermostat off
 Other “thermostats”

 npt_isotropic (NPT)
 Generalized Hybrid Monte-Carlo (GHMC; NPT and more)
 Dissipative Partice Dynamics (DPD)

set up the thermostat
set langevin_gamma 1.0
thermostat langevin $temperature $langevin_gamma

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

33/43IntroductionOlaf Lenz

Setting Up the System: More

 nemd: “Non-equilibrium MD”: special method for creating a shear flow
 cellsystem: Changing the cell system

 Turn on Domain decomposition (default)
 Turn off Verlet lists
 Turn off Cell lists (nsquare)
 Use “layered” system (only for MMM2D)

 adress: Turn on ADResS (better use ESPResSo++)
 cuda: Set up CUDA device
 on_collision: Turn on collision detection

 Generate a bond when two particles get close
 reactions: Turn on reactions

 Change the type of a particle when it is close to a catalysator

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

34/43IntroductionOlaf Lenz

Setting Up Particles

 Create a single particle: part pid arguments
 pid specifies a numeric id
 Holes in pid order cost memory

 Possible arguments: position (required in first call), velocity, charge, mass, type
 Create bonds to other particles (bond)
 Fix particle in one or more directions (fix)
 Apply external force to particle (ext_force)
 Set individual temperature (feature LANGEVIN_PER_PARTICLE)
 Delete a particle (delete)
 Get particle properties part print arguments

generate $n_part particles at random positions
for {set i 0} { $i < $n_part } {incr i} {
 set x [expr $box_size*[t_random]]
 set y [expr $box_size*[t_random]]
 set z [expr $box_size*[t_random]]
 part $i pos $x $y $z type 0
}

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

Oriented Particles, Particle groups, Constraints

 Feature ROTATION
 Particles can be oriented

 GB-ellispoids
(coarse-grained liquid crystals)

 Directional Lennard-Jones
 Point-like dipoles

 Quarternion integrator
 Roughly 30% slower!

 Tcl commands to create many
particles at once
 Polymer polymer
 Counterions counterions
 Salt salt
 Diamond polymer networks

diamond
 Icosaeder icosaeder
 Copy existing particles

copy_particles
 Extended objects (“Constraints”)
constraint
 Walls, Spheres, Cylinders, Pores,

Rods, Rhomboid, Planes
 External magnetic field

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

36/43IntroductionOlaf Lenz

Virtual Sites

 Virtual sites are particles that are not propagated by themselves
 The position depends on the position of other particles (reference particles)
 Forces acting on the virtual sites are transferred to the reference particles
 Create virtual sites with part
 Feature VIRTUAL_SITES_COM:

Virtual site in the center-of-mass of other (non-virtual) particles
 Feature VIRTUAL_SITES_RELATIVE:

Virtual sites in a position relative to a (non-virtual) reference particle
 Allows to create rigid arrangements of particles

(e.g. raspberry model, rods, …)
 Requires ROTATION

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

37/43IntroductionOlaf Lenz

File I/O and Visualization

 No simple “save state” command!
What should be saved? What
comprises the state of the simulation?
 Particle positions, Box size
 Bonds? Particle Types? Interactions?
 RNG state? Tcl variables?
 “Position” in the Tcl code?

 No simple checkpointing!
 Blockfile format

 Allows to write specified blocks of
information:
blockfile chan write particles

 ESPResSo can read these blocks:
blockfile chan read auto

 ES defines different blocks
(particles, bonds, interactions)

 Jump into the main loop needs to be
done manually

 Visualize best with VMD
 Off-line

 Recommended: Create VTF files
 writevsf to output the structure

into the VTF file
 writevcf to output a configuration

into the VTF file
 Can also create PSF and PDB

 On-line
 VMD has a protocol for on-line

visualization
 In general, off-line is more useful

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

38/43IntroductionOlaf Lenz

Hands-On: First steps and Visualization

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

39/43IntroductionOlaf Lenz

Setting Up Interactions

 Non-bonded Short-range Interactions
 Work between particle types
 Lennard-Jones, Morse, Buckingham,

Smooth-step (DPD), …
 Tabulated

 Bonded interactions
 Work between two (or more) specific

particles (can be set in part)
 Have a bondid
 Bond-length 2-body interaction:

Harmonic, FENE, …
 Bond-angle 3-body interaction:

Harmonic, Cosine, …
 Dihedral 4-body interaction
 2-body interactions can be made rigid

 Not well-tested

 Long-range Interactions
 Electrostatics
 Magnetostatics (point-like dipoles)
 Hydrodynamic interactions
 → next days

 No force fields built in!

set lj_epsilon 1.0
set lj_sigma 1.0
set lj_cutoff 2.5
inter 0 0 lennard-jones \
 $lj_epsilon $lj_sigma \
 $lj_cutoff
puts "Interactions:\n[inter]"

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

40/43IntroductionOlaf Lenz

Exclusions, Dynamic Bonding

 Often, neighboring particles in a
chain should not interact via non-
bonded interactions

 Variant 1:
Bonded subtracted LJ potential
lj_subst

 Variant 2:
Exclusions (Feature EXCLUSIONS)
 Explicitly exclude interactions

between particles
part exclude

 Automatically exclude interactions of
bonded particles
part auto_exclusions

 collision_on:
Create bonds between particles
when they come close

 Useful e.g. for Diffusion-limited
aggregation

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

41/43IntroductionOlaf Lenz

Running the simulation

 Main integrator: Velocity Verlet
 Do a number of integration steps: integrate steps
 Use integrate 0 to update the forces or positions of virtual sites
 Warmup integration

 Cap the maximal force: inter ljforcecap F_max
 Prevents overlapping particles and very high forces
 Do steps until the large forces disappear

 Main integration
 Switching between Tcl and C has an overhead
 Do as many steps in a single integrate command

 Advanced commands for integration
 Parallel tempering
 Metadynamics for { set i 0 } { $i < 100 } { incr i } {

 integrate 1000
 .
 .

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

42/43IntroductionOlaf Lenz

Analysis in Tcl and in the core

 Analysis can be done in Tcl itself
 Use part print to get particle

positions, velocities, etc.
 Allows for anything you can think of
 … but maybe slow

 slow numerics in Tcl
 not parallel

 analyze: predefined observables
 Implemented in C/C++, possibly in

parallel
 Initialized from Tcl
 Many different observables

 Energies, pressures, stress tensor…
 Minimal distances, RDF, structure

factor, …
 Polymer observables: end-to-end

distance, radius of gyration, …

 Commands to analyze several
configurations
 analyze append: Store

configuration
 analyze configs: Retreive

stored configurations
 Some analysis commands can

handle stored configs (e.g. analyze
<rdf>)

 “Analysis in the core”
 Allows to turn on some

measurements during run of
integrate

 Useful e.g. for MSD

h
tt

p
:/

/w
w

w
.ic

p
.u

n
i-

st
u

tt
g

ar
t.

d
e

43/43IntroductionOlaf Lenz

Hands-On: The rest

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

