

<u>Olaf Lenz</u>

Institut für Computerphysik, Universität Stuttgart Stuttgart, Germany

University of Stuttgart

Germany

University of Stuttgart

INSTITUTE FOR COMPUTATIONAL PHYSICS University of Stuttgart Germany

Arbitrary Units

- All-atom MD simulations
 - Lengths in nm
 - Energies in kJ/mol
- Coarse-grained MD
 - No particular units!
 - Units by user choice
- Two independent reference units
 - Use typical length and energy scale
 - Keep quantities in the order of 1
 - Better numerical accuracy
 - Easier to handle
 - e.g. Length unit: LJ parameter σ (i.e. σ =1)
 - e.g. Energy unit: LJ parameter ε (i.e. ε =1)
- Relation Temperature/Energy: $k_B = 1$
- Can be translated to any other unit system

Technical Tricks / VMD

Absolute vs. Folded Coordinates

- How to store positions in Periodic Boundary Conditions (PBC)?
- Folded Coordinates
 - (a.k.a. "Wrapped Coordinates")
 - Coordinates are always in central image
 - When a particle leaves the box to any direction, the coordinates are folded
 - Problem: Folding is irreversible
- Absolute Coordinates
 - Coordinates are not folded
 - Coordinates can be outside the central image
 - Coordinates are continuous, no "jumps"
- Computing Distances:
 - PBC need to be taken into account in both cases
- Pros of Absolute Coordinates
 - Possible to measure MSD
 - Visualization

Olaf Lenz

- No overstretched bonds
- Molecules stay together

Speeding Up MD

- MD simulation with N particles
 - Propagation: O(N)
 - Force computation: in theory: O(N²)
- ... but many interactions are short-ranged
 - ... or at least long tails can be neglected
 - e.g. Lennard-Jones interaction
 - Particle pairs with a distance larger than maximal interaction range (*cutoff*) can be ignored
 - Can be used to improve speed
 - However: only coordinates are known
- Long-ranged interactions are trickier
 - Coulomb interaction → Thursday
 - Hydrodynamics → Friday

Olaf Lenz

- Split box into cells
- Cell size ≥ *cutoff*
- Store a list of particles per cell
- Interaction partners must all be in neighboring 27 cells
- When a particle moves, move it to new cell
- Reduces complexity to O(N) (at constant density)
- Requires at least 3 cells per direction
 - Otherwise physically questionable (particle interacts with its own image)
- Used by ESPResSo/++

http://www.icp.uni-stuttgart.de

University of Stuttgart

Verlet Lists (a.k.a. Neighborhood List)

- Further improvement
- Compute list of pairs within cutoff+skin (e.g. via Cell Lists)
- Store Verlet lists
- Compute interaction only for pairs in the list
- Reduces number of interactions to be computed (>60% of Cell lists)
- Verlet lists need to be recomputed when a particle has moved further than ½ skin ("Verlet update")
- Skin size: Trade-off
 - Larger skin: more pairs in list
 - Smaller skin: more frequent update
- Used by ESPResSo/++

Parallelization: Atomic Decomposition

- How to do MD in parallel with multiple processes (CPUs, cores, nodes, whatever)?
 - Copy all particles to all processes
 - Compute forces of "own" particles and propagate own particles
 - All-to-all communication of particles after each step
- Pros
 - Simple to implement
 - Simple load balancing
- Cons
 - Lots of communication O(P²)
 - Double computation of forces (or even more communication)
 - Bad for lager systems

CPU0 CPU1 CPU2

Olaf Lenz

Technical Tricks / VMD

Parallelization: Domain Decomposition

- Decompose system into spatial domains
- Each process
 - is responsible for one *local* domain
 - stores local particles
 - and boundaries of neighboring domains (ghost particles)
- Only particles in domain boundaries need to be communicated to neighbor domains O(P)
- Pseudo-algorithm
 - 1. Domain decompose system
 - 2. Compute forces for all local particles
 - 3. Propagate local particles
 - 4. Communicate boundary particles to neighbor process
- Can profit from Cell lists
- Used by ESPResSo/++

Visualization with VMD

- Visual Molecular Dynamics
- Developed at K. Schulten's group in Urbana-Champagne
- Made mostly for proteins, therefore strange vocabulary
- But also very flexible for CG
- Useful for online visualization and publication-quality rendering
- Tcl-scripted (like ESPResSo)
- Free of charge, open source
- ... but not FOSS

TNISTITUTE FOR

Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J. Molec. Graphics, 1996, vol. 14, pp. 33-38.

Technical Tricks / VMD

University of Stuttgart

Visualization with VMD: Concepts

Representation

- Display of a Selection of atoms
- With a specific Drawing style (e.g. VDW, lines, bonds, ...)
- And a specific Coloring style (e.g. by atom type, by residue, by observable, ...)
- Multiple representations allow for fancy visualization
- Most important dialog: Graphics → Representations

Two visualizations of bovine prion 1DX0

Technical Tricks / VMD

University of Stuttgart

Visualization with VMD: PBCTools

- PBC make visualization complex
 - Overstretched bonds
 - Jumps between frames
 - What is in the center?
- PBCTools can help
 - Draw a box
 >pbc box
 - Wrap the coordinates into an image >pbc wrap
 - "Unwrap" coordinates (remove wrapping jumps)
 >pbc unwrap
 - Not trivial, as the task is not trivial
 - Tcl commands, no GUI

Olaf Lenz

Technical Tricks / VMD

University of Stuttgart

Technical Tricks / VMD