

Tracer diffusion in polymer solutions

Peter Košovan¹ Olaf Lenz¹ Christian Holm¹ Apostolos Vagias² Kaloian Koynov² George Fytas²

Institute for Computational Physics, University of Stuttgart
 MPI for Polymer Research, Mainz

ESPRESSO Summer School, Stuttgart, 12.10.2012

P. Košovan et. al.

Diffusion – how and why?

- Diffusant in an environment
- Drug release, chemical reaction kinetics
- Biology

Methods to study diffusion in solutions

- Particle tracking
- Scattering of light, neutrons, X-rays ...
- PFG NMR
- Fluorescence recovery after photobleaching (FRAP)

P. Košovan et. al.

2/27

2/27

Diffusion – how and why?

- Diffusant in an environment
- Drug release, chemical reaction kinetics
- Biology

uni-stuttgart.de

Methods to study diffusion in solutions

- Particle tracking
- Scattering of light, neutrons, X-rays ...
- PFG NMR
- Fluorescence recovery after photobleaching (FRAP)
- Fluorescence Correlation Spectroscopy

P. Košovan *et. al.*

Fluorescence correlation spectroscopy (FCS)

- Fluorophores (fluorescent tracers)
- Selectivity
- Single-molecule sensistivity
- Sub-micron sized focal spot
- Tracer diffusion in its environment
- Popular in biosciences
- Works also in vivo

P. Košovan et. al.

dart.(

University of Stuttgart Germany

Typical FCS tracers

Analysis of FCS experiments

Autocorrelation of fluorescence intensity fluctuations

$$G(t) = \frac{\langle \delta I(t_0) \delta I(t_0 + t) \rangle}{\langle \delta I(t) \rangle^2}$$

Inverse problem – solved by curve fitting

P. Košovan *et. al.*

Tracer diffusion

5/27

Analysis of FCS experiments

Autocorrelation of fluorescence intensity fluctuations

$$G(t) = \frac{\langle \delta I(t_0) \delta I(t_0 + t) \rangle}{\langle \delta I(t) \rangle^2}$$

- Inverse problem solved by curve fitting
- Single-component diffusion

$$G(t) = \frac{1}{N} \left(1 + \frac{4Dt}{w^2} \right)^{-1} \left(1 + \frac{4Dt}{s^2 w^2} \right)^{-0.5}$$

P. Košovan et. al.

Analysis of FCS experiments

Autocorrelation of fluorescence intensity fluctuations

$$G(t) = \frac{\langle \delta I(t_0) \delta I(t_0 + t) \rangle}{\langle \delta I(t) \rangle^2}$$

- Inverse problem solved by curve fitting
- Single-component diffusion

$$G(t) = \frac{1}{N} \left(1 + \frac{4Dt}{w^2} \right)^{-1} \left(1 + \frac{4Dt}{s^2 w^2} \right)^{-0.5}$$

Multi-component diffusion + photophysical relaxation

$$G(t) = \frac{Q(t)}{N} \sum_{i=1}^{n} F_i \left[\left(1 + \frac{4D_i t}{w^2} \right)^{-1} \left(1 + \frac{4D_i t}{s^2 w^2} \right)^{-0.5} \right]$$

P. Košovan et. al.

A glimpse on experimental FCS data

Two different tracers in dilute polymer solution

aart.de

Concentration regimes in polymer solutions

Dilute

Semidilute

Concentrated

Overlap concentration:

$$c^{*} = rac{N}{rac{4}{3}\pi R_{
m g}^{3}} \sim rac{N}{N^{-3
u}} \sim N^{-2
u} pprox N^{-1.2}$$

P. Košovan et. al.

Tracer diffusion

59

Diffusion of polymers in solution

Rouse: no hydrodynamics

- Real concentrated solutions
- Langevin thrermostat
- Rouse time

 $au_{\mathrm{R}} \sim au_0 N^{(1+2
u)}$

• Long time scales $\tau \gg \tau_{\mathsf{R}}$

Zimm: hydrodynamics

- Real dilute solutions
- LB-fluid, DPD
- Zimm time

$$au_{\mathsf{Z}} \sim au_{\mathsf{0}} N^{3
u}$$

Long time scales τ ≫ τ_Z

$$D_{\mathsf{R}} = rac{k_{\mathsf{B}}T}{\zeta_{\mathsf{R}}} = rac{k_{\mathsf{B}}T}{N\zeta}$$
 $D_{\mathsf{Z}} = rac{k_{\mathsf{B}}T}{\zeta_{\mathsf{Z}}} \sim \sim rac{k_{\mathsf{B}}T}{\eta_{\mathrm{s}}bN^{\nu}}$

• Zimm is faster than Rouse for the same N

P. Košovan et. al.

Tracer diffusion

9/27

P. Košovan et. al.

10⁰

University of Stuttgart

59

Clue: polymer-tracer interactions

13/27

Model system setup

- 20 athermal polymers (WCA potential)
- Chain length M = 50
- 10 athermal tracers (WCA potential)
- 5 attractive tracers (LJ potential)
- Variation of ϵ_{LJ}
- Concentrations: $c/c^* \in [10^{-3}:10^2]$
- $\sigma_{LJ} = 1 \text{ nm}, D_0 = D(Rh G)$
- Langevin thermostat P. Košovan *et. al.*

Relevant observables

• *G*(*t*) from simulation trajectory

$$G(t) = \left\langle \exp\left(-\frac{\Delta x^2(t)}{w^2} - \frac{\Delta y^2(t)}{w^2} - \frac{\Delta z^2(t)}{s^2 w^2}\right) \right\rangle,$$

F. Höfling et. al., Soft Matter, 7, 1358-1363 (2011)

Realization in ESPRESSO:

```
correlation $fcs write_to_file "Gt.dat"
```

P. Košovan et. al.

P. Košovan et. al.

Tracer diffusion

59

Athermal tracers: crowding-induced slowdown

Attractive ($\epsilon_{LJ} = 2.5$): two-component diffusion

Attractive ($\epsilon_{LJ} = 2.0$): gradual slowdown

Comparing different length scales

Tracer trajectory ($\epsilon_{LJ} = 2.5$) compared to different focal spot sizes

icp.uni-stuttgart.de

59

21/27

History-dependent observable: binding lifetime

- Definition: time interval between two events (binding or unbinding)
- Event = change of a state
- Need to know the state in the past
- Realization in ESPRESSO:

```
set bound_lft [observable new interaction_lifetimes \
    type $type_tr_att type $type_mon $cut 1];
```

```
...
for {set i 0} {$i < $maxi} {incr i} {
    integrates $nsteps;
    observable $bound_lft update
}
...
set lifetimes observable $bound_lft print;</pre>
```

P. Košovan et. al.

University of Stuttgart

59

22/27

Measuring the bound lifetimes

Survival probability

 $P(t) = \exp(-t/\tau)$

P. Košovan et. al.

Quantitative comparison of length scales

$$L^2_{
m bound}=6D_{
m bound}t_{
m bound}$$

$$L_{\rm free}^2 = 6 D_{\rm free} t_{\rm free}$$

€LJ	t _{bound} [µs]	L _{bound} [nm]	t _{free} [μs]	L _{free} [nm]	
2.0	0.45	11	4.63	101	
2.5	2.17	54	2.53	75.0	

 $\epsilon_{\rm LJ} = 2.0: \ \textit{L}_{\rm bound} \ll \textit{w} = 30\,\text{nm}$

 $\epsilon_{LJ} = 2.5$: $L_{bound} \approx W$

P. Košovan et. al.

Tracer diffusion

23/27

≡ ∽ ੧

University of Stuttgart

Effective diffusion coefficient ($\epsilon_{LJ} = 2.0$)

25/27

Resolved issues

- Diffusion slowdown critically depends on polymer-diffusant interactions
- Universal behaviour for athermal diffusants
- Slowdown deep in the dilute solution for interacting diffusants
- FCS can resolve the two processes when attraction is strong enough
- It yields *D*_{eff} when attraction is weaker
- Clear comparison of length scales from simulations

P. Košovan et. al.

Open questions

- Deviatoin of Rh6G slowdown from simple binding.
- Saturation of $F_{
 m slow} pprox 0.5$
- Origin of slow A488 slow component at high c

P. Košovan et. al.

University of Stuttgart Germany

Thanks and Acknowlegement

- Experimental collaborators:
 - A. Vagias, K. Koynov, G. Fytas
- \$ DFG SPP 1259 Intelligente Hydrogele

Thank you for your attention!

P. Košovan et. al.

Tracer diffusion

27/27