

Agglomeration of nano- and micron-sized particles

Prof. Andreas Kronenburg

Acknowledgements: G. Inci (ITV), R. Weeber (ICP), A. Arnold (ICP)

Institut für Technische Verbrennung

Combustion Technology

- Importance
 - Combustion is everywhere

Vehicle Propulsion

Energy Engg / Renewable Energies

Aerospace Engineering

- Vision
 - Efficient
 - clean
 - safe
- Motivation legislation
 - Euro VI
 - "VISION 2020"

Moving away from energy conversion ...

Materials science, environmental engineering

1. example: particle synthesis

soot

Titania

PT/TiO₂

2. example: thermal coating

Particles

 High temperature (flame) synthesis of nanoparticles constitutes 90% of particle production by mass and value

titanium dioxide

- BUT: reactor design largely empirical, no models exist
- WHY? Estimated computational time is 10⁷ years on Earth Simulator due to scale separation, nanometer vs. meters.

Particles

Effects on climate

Most important direct radiative forcing effect through sulfur

- Sulfataerosole:
- Black Carbon (fossil fuels):
- biomass:

-0.8 W/m² to -0.20 W/m² +0.03 W/m² to +0.30 W/m²

SO₃ or sulfates are condensation kernels

→ secondary effects (change of microphysical (radiative) properties and of life cycle of clouds

Figure 1. Schematic of the aerosol indirect effects. CDNC means cloud droplet number concentration, and LWC means liquid water content(aus Haywood & Boucher, 2000).

Particles

Indirect radiative forcing

Albedo effect betwee -0.3 W/m² to -1.8 W/m²

Particles

Based on computations – predictions extremely difficult

Eample mixing: Sulfates and soot

+0.36 (internally mixed)

Internal mixing soot/sulfate: every percent of soot —> radiative forcing +0.034 W/m²

Soot

structure:

Agglomeration:

Soot structure

How can the structure be modelled?

Agglomeration of flat ($C_{202}H_{90}$) and spherical ($C_{188}H_{53}$) partikles with "coarse grained" simulationen (© A. Violi & S. Izvekov, 2007)

we do not want to go into that much detail

assume "microscopic" soot particles (~ 10-100 nm)

Modelling

Modelling of agglomeration in turbulent flow:

Evolution of particle number density n (PBE or GDE):

$$\frac{\partial n}{\partial t} + \nabla \cdot n \,\mathbf{u} - \nabla \cdot D \nabla n + \frac{\partial G(v, \mathbf{Y}) n(v)}{\partial v} = S(v, \mathbf{Y}) + \frac{1}{2} \int_0^v \beta(\tilde{v}, v - \tilde{v}) n(\tilde{v}) n(v - \tilde{v}) d\tilde{v} - \int_0^v \beta(v, \tilde{v}) n(v) n(\tilde{v}) d\tilde{v}$$

The particle number density is a function of (v, x, t) - v: particle volume

Typical PSD (Singh et al, 2006) for soot

Collision Kernel

Focus on aggregation

What is $\beta(v_i, v_j)$? collision kernel or collision frequency

How can it be modelled?

Free molecule range:

$$\longrightarrow \quad \boldsymbol{\beta}(\mathbf{v}_i,\mathbf{v}_j) = \pi (\mathbf{d}_{pi} + \mathbf{d}_{pj})^2 \left[\mathbf{k}_{\mathrm{B}} T / (\pi \mathbf{m}_{\mathrm{R}}) \right]^{\frac{1}{2}}$$

Continuum regime:

$$\beta(\mathbf{v}_i, \mathbf{v}_j) = 4\pi(d_{pi}+d_{pj})[D_i+D_j]$$
 -D = diffusio

D = diffusion coefficient

Collision kernel

Laminar shear and turbulence:

Collision Kernel

Are the particles always spherical?

agglomeration due to turbulence vs. Brownian motion

Fractal dimensions during particle agglomeration: agglomeration of primary particles due to convection (e.g. turbulence) (a), and agglomeration of primary particles (b) and of clusters (c) due to Brownian motion (adapted from DW Schaefer, 1988).

Collision Kernel

Fractal Dimension

Influence of fractal dimension on diameter:

MD Simulations

HOW TO GET D_f?

ESPResSo

The motion and dynamics of the Brownian particles are modelled by solving the Langevin Equations of motion

$$m_P \ddot{\mathbf{x}}_i = F_D + F_{ext} + BdW$$
 (M du/dt + γ u = F(t))
 $\dot{\mathbf{x}} = \mathbf{v}(t, x)$

How to model particle collision and sticking?

- 1. highly attractive LJ force
- 2. connect colliding particles to each other with a single bond

3. connection of 2 contacting particles with a single bond, 3rd particle with angle potential and 4th particle with dihedral potential

Conventional models

Agglomeration of primary particles

LJ potential only

Single bond + angle + dihedral potentials

MD Simulations

1. Highly attractive LJ force

• Due to attractive forces aggregates get compact

2. Connect colliding particles to each other with a single bond

• Due to the spherically symmetric property and elastic property of bonds the connected particles have relative motion to each other

3. Single bond + angle potential + dihedral potential

Cause a rapid energy increase in the system and result in bond broken problem

We need something else

Single Bonded Virtual Particles Model

To avoid sliding motion - introduce virtual particles

Angle Bonded Virtual Particles Model

Developed Models

Model Name	Model Description	Acronym
Model using highly attractive Lennard Jones potential	Collision model with highly attractive Lennard Jones potential	LJ
Single bond model	2-body potential between collided particles	SB
All bonds model	2-body, 3-body and 4-body potential between particles	AB
Single bonded virtual particles model	Collision model with two virtual particles at the collision point and connected by a 2-body potential	SBV
Angle bonded virtual particles model	Collision model with two virtual particles connected through 3-body potential	AnBV

MD Simulations – Test Cases

Cross-Shaped Agglomerate

Square-shaped Agglomerate Simulation Results

Universität Stuttgart

(a) initial structure (b) LJ model (c) SB model (d) AB model (e) SBV model (f) AnBV model

Evolution of fractal dimension

Particle Agglomeration (Case 3a)

Number of Agglomerates and Avg Df

Time evolution using SBV

3 2.5 fractal dimension 2 1.5 1 2000 4000 6000 8000 10000 0

Fractal dimension of a selected agglomerate

dimensionless time

Effect of viscosity

Number of collided particles and agglomerates at different temperatures

What is this again?

Normilized time/ avg.Df	16.4	6.8	3.9
10000	-	-	1.82
20000	-	1.77	1.77
47000	1.72	-	1.745
52000	-	-	1.73

CCA (Brownian Trajectory) Meakin 1983 $Df=1.75 \pm 0.05$

CCA (Brownian Trajectory) w/o Reconstruction Kempf 1999 Df=1.8

Electron micrograph of soot aggregates extracted from a coannular ethylene diffusion flame. Position: z = 30mm & r = 2.1mm.

 D_f =1.74±0.06 (@ z=15 mm, r=3.7 mm) D_f =1.62±0.04 (@ z=15 mm, r=3.1 mm)

DLA Simulation Results

Conclusion

Conclusions

- ESPResSo can be used for studies beyond molecular dynamics
- New contact models needed to be implemented
- "Rigid body motion" realized by virtual particles
- •Aggregates resemble "real life" soot clusters
- **Future Work**
- •Statistics for modelling of D_f and β
- Interaction with flow field