

Rare event sampling with

11.10.2012

Kai Kratzer¹

¹Institute for Computational Physics, University of Stuttgart

Outline

Intro: Rare events & sampling methods overview

- Forward flux sampling (FFS)
- Stochastic process rare event sampling (S-PRES)
- Harness System (FRESHS)

Conclusion

Rare Events: Examples

Crystallization of charged macromolecules

Clusters smaller than a critical nucleus size are more likely dissolved than they continue to grow!

$$\Delta G = -\Delta G_V + \Delta G_S = -\mu \rho \frac{4}{3} \pi L^3 + 4\pi \sigma L^2$$

CNT: bulk term and surface term

- → Long time scales, many particles: Does not crystallize in available computation time
- → Computationally very expensive task, only few, if any, events are observed in a conventional simulation run

→ Rare event

- Macroscopic: Earthquakes, financial crashes, telecommunication failures
- Microscopic: Activated chemical reactions, protein folding, translocation of DNA through nanopores

Simulating rare events – methods overview

- Many rare event sampling methods have been developed recently [1], e.g.
 - Bennet-Chandler/reactive flux methods based on the transition state theory (TST)
 - Transition path sampling (TPS) and transition interface sampling (TIS)
 - Milestoning
 - The weighted ensemble method
 - The finite temperature string method (FTS)

equilibrium

equilibrium and nonequilibrium

- ٠..
- Forward flux sampling (FFS)
- Stochastic process rare event sampling (S-PRES) [2]

[1] R. J. Allen, Ch. Valeriani, P. R. ten Wolde, J. Phys: Condens. Matter 21 463102 (2009)

[2] J. T. Berryman and T. Schilling, J. Chem. Phys. 133, 244,101 (2010)

11.10.2012

Outline

Intro: Rare events & sampling methods overview

- Forward flux sampling (FFS)
- Stochastic process rare event sampling (S-PRES)
- Harness System (FRESHS)

Conclusion

Forward Flux Sampling (FFS)

R. J. Allen, Ch. Valeriani, P. R. ten Wolde, J. Phys: Condens. Matter 21 463102 (2009)

Rare event: **Spontaneous**, **fluctuation-driven** transition

11.10.2012

Forward Flux Sampling

$$\frac{\overline{\Phi}_{A,0}}{\overline{h}_A} = \frac{\text{number of configurations at } \lambda_0}{\text{total simulation time}}$$

$$P(\lambda_n|\lambda_0) = \prod_{i=0}^{n-1} P(\lambda_{i+1}|\lambda_i)$$

$$k_{AB} = \frac{\overline{\Phi}_{A,n}}{\overline{h}_A} = \frac{\overline{\Phi}_{A,0}}{\overline{h}_A} P(\lambda_n | \lambda_0)$$

$$P(\lambda_{i+1}|\lambda_i) \gg P(\lambda_n|\lambda_0)$$

→ Much easier to sample than the whole process!

FFS:

Equilibrium and nonequilibrium systems with stochastic dynamics, quasistatic

Outline

Intro: Rare events & sampling methods overview

- Forward flux sampling (FFS)
- Stochastic process rare event sampling (S-PRES)
- Harness System (FRESHS)

Conclusion

Stochastic Process Rare Event Sampling (S-PRES)

- J. T. Berryman and Tanja Schilling, J. Chem. Phys. 133, 244101 (2010)
- Focus on calculating the **time-series** of the probability of a rare event
- Phase space binning instead of hypersurfaces
- Reaction coordinate λ , trajectory paths similar to FFS
- Now: Each trajectory fragment (shot) has a fixed duration for tracking the time evolution

Path generation: Symbols represent configurations, lines represent path segments of duration τ .

Stochastic Process Rare Event Sampling (S-PRES)

- Rosenbluth sampling is used to ensure dynamically adaptive sampling rates in the bins
- Fixed bins
 - → Time-dependent matrix of transition frequencies
 - → Extraction of observables and statistics

S-PRES:

Nonequilibrium and **nonstationary** systems with macroscopically **irreversible dynamics** and away from both stationary and metastable states

Examples of events: quenching, aging, ignition, impact

Outline

Intro: Rare events & sampling methods overview

- Forward flux sampling (FFS)
- Stochastic process rare event sampling (S-PRES)
- Harness System (FRESHS)

Conclusion

The Flexible Rare Event Sampling Harness System

The Flexible Rare Event Sampling Harness System

The Flexible Rare Event Sampling Harness System

- Asynchronous parallelization
 - → each path can be calculated by a different client
- Calculation of the physics can still be parallelized using OpenMP or MPI
 E.g. each client 1 node and 8 CPUs,100 clients connected
 - → 800 CPUs working for us
- Ghost runs to bridge the waiting time on interface change

Spin-off projects:

- A. Taudt: Gromacs & biological Systems, ICP / ITB
- J. Zeman: Kinetic Monte Carlo, Fe/Cu nucleation, ICP / IMWF
- S. Kesselheim: Translocation of DNA through nanopore, ICP

Results of a crystallization simulation - pathways

Successful pathways of the nucleation process: Fluctuations of the order parameter.

Results - backtracing

Backtrace of the successful runs. As many backtraces as points on border of state B.

Results - check of statistics

(a) BLUE = 1 run, RED = all runs.

(b) Histogram of the runs per point.

Conclusions

- Developed flexible framework for simulating rare events
 - → Simulating quasistatic and dynamic systems in equilibrium and non-equilibrium
 - → Farming on HPC hardware
 - → Tested with ESPResSo, Gromacs, LAMMPS and various self-written simulation codes
 - → Will be put open source soon

11.10.2012

K. Kratzer, 18

FRESHS + ESPResSo

Now:

Hands-on Tutorial

Requirements for the hands-on session

FRESHS & Tutorial: http://www.icp.uni-stuttgart.de/~kratzer/freshs_tut.tar.bz2

ESPResSo: http://espressomd.org

Python

Optional:

- Gnuplot
- A sqlite DB viewer, e.g. firefox sql browser plugin
- VMD

Getting started

- Unpack the tutorial package
- Open the lj_spres_tut.pdf
- Follow instructions in the pdf

E.g.

Run the server:

python "\$FRESHS"/server/main_server.py "\$CONF"

Start a client:

python "\$FRESHS"/client/main_client.py "\$ESPRESSO" "\$HARNESS"

■ If things are working, start more clients ©