Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Mesoscopic simulations of lipid membranes

Mingyang Hu, Patrick Diggins, and Markus Deserno

Department of Physics, Carnegie Mellon University, Pittsburgh PA, USA

October 11, 2012

Introduction

Lipid Membrane Why coarse-graining?

Solvent-free CG Model

Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Mode Solvent-free

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Outline

Introduction Lipid Membrane Why coarse-graining?

Solvent-free CG Model

Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching Mesoscopic membranes

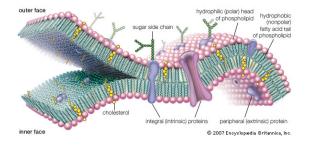
Mingyang Hu mingyang@cmu.edu

Introduction

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation


Propertie

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

What's a lipid membrane?

- forms continuous barriers around cells, cell nuclei
- made of two layers of lipid molecules
- controls the diffusion of molecules in and out of the cell

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

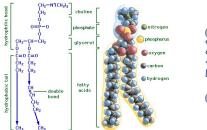
ntroduction

Lipid Membrane

/hy coarse-graining?

Solvent-free CG Mode Solvent-free Model

Code Implementation


Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Building blocks: Lipid molecules

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

ntroductior

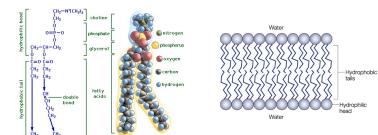
Lipid Membrane

/hy coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie


Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

- amphiphilic molecule
 - hydrophilic head (polar: "attracted" by water)
 - hydrophobic tails (apolar: "repelled" by water)

Building blocks: Lipid molecules

- amphiphilic molecule
 - hydrophilic head (polar: "attracted" by water)
 - hydrophobic tails (apolar: "repelled" by water)
- membranes form by spontaneous aggregation of lipids
 - self-assembly process

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane

/hy coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension


Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Why coarse-graining?

Lindahl, E. & Edholm, O. *Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations*. Biophys. J. **79**, 426-433 (2000)

All-atom lipid bilayer $20 \text{ nm} \times 20 \text{ nm}$, 1024 lipids simulation time: 10 ns

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

ipid Membrane

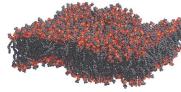
Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension


Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Why coarse-graining?

Lindahl, E. & Edholm, O. *Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations*. Biophys. J. **79**, 426-433 (2000)

All-atom lipid bilayer $20 \text{ nm} \times 20 \text{ nm}$, 1024 lipids simulation time: 10 ns

What if we want a boxlength of L = 200 nm?

How does computing effort scale with L?

effort \sim geometry

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

ipid Membrane

Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

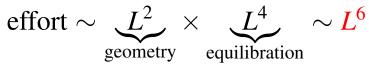
Properties

Membrane elasticity Bending Line tension


Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Why coarse-graining?


Lindahl, E. & Edholm, O. *Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations*. Biophys. J. **79**, 426-433 (2000)

All-atom lipid bilayer $20 \text{ nm} \times 20 \text{ nm}$, 1024 lipids simulation time: 10 ns

What if we want a boxlength of L = 200 nm?

How does computing effort scale with L?

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

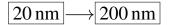
Introduction

.ipid Membrane

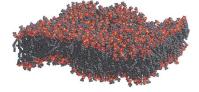
Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation


Propertie

Membrane elasticity Bending Line tension


Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Efficiency

Million times more computationally expensive!

- amount of material \sim membrane area $A = L^2$.
- domain decomposition scheme:
 - ▶ increase # CPUs ~ A
- but simulation time $\sim A^3$
 - uncompensated factor of A²

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

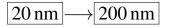
Introductio

Lipid Membrane

Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation


Properties

Membrane elasticity Bending Line tension


Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Efficiency

Million times more computationally expensive!

- CG helps to understand the essence of the problems
- CG reduces the number of DOF
- CG allows larger time steps
- CG smoothens the free energy surface
 - \Rightarrow Better sampling

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane

Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Outline

ntroduction Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

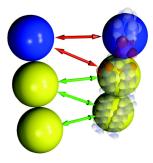
Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model

Solvent-fre Model

Code Implementation


Propertie

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

The CG model¹

Coarse-grain in order to probe the mesoscopic regime of lipid bilayers

- generic top-down bead-spring
- 3 beads: reasonable aspect ratio
- only pair forces
- solvent free

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

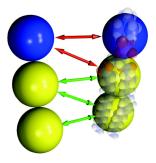
Lipid Membrane Why coarse-graining?

Solvent-free CG Model

Solvent-fre Model

Code Implementation

Properties


Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

¹I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E **72**, 011506 (2005) I.R. Cooke and M. Deserno, J. Chem. Phys. **123**, 224710 (2005).

The CG model¹

Coarse-grain in order to probe the mesoscopic regime of lipid bilayers

- generic top-down bead-spring
- 3 beads: reasonable aspect ratio
- only pair forces
- solvent free

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

Lipid Membrane Why coarse-graining?

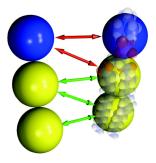
Solvent-free CG Model

Solvent-fre Model

Code Implementation

Properties

Membrane elasticity Bending Line tension


Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

- Note: several other similar models exist.
- Here I'll talk about the one used in our group
- It has been implemented in ESPResSo.

¹I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E **72**, 011506 (2005) I.R. Cooke and M. Deserno, J. Chem. Phys. **123**, 224710 (2005).

The CG model¹

Coarse-grain in order to probe the mesoscopic regime of lipid bilayers

- generic top-down bead-spring
- 3 beads: reasonable aspect ratio
- only pair forces
- solvent free

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

Lipid Membrane Why coarse-graining?

Solvent-free CG Model

Solvent-fre Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

- Note: several other similar models exist.
- Here I'll talk about the one used in our group
- It has been implemented in ESPResSo.

¹I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E **72**, 011506 (2005) I.R. Cooke and M. Deserno, J. Chem. Phys. **123**, 224710 (2005).

Why is "solvent free" good?

Example^a

- 16,000 DPD lipids, 4 beads per lipid.
- 64,000 particles for lipids.
- But in total 1,536,000 particles in box!

96% simulation time spent with solvent.

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

.ipid Membrane Why coarse-graining?

Solvent-free CG Model

Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

^aM. Laradji & P.B. Sunil Kumar, Phys. Rev. Lett. **93**, 198105 (2004).

Why is "solvent free" good?

Example^a

- 16,000 DPD lipids, 4 beads per lipid.
- 64,000 particles for lipids.
- But in total 1,536,000 particles in box!

They had a good reason for doing this: study of the *dynamics* of domain growth, where hydrodynamics is an important factor.

^aM. Laradji & P.B. Sunil Kumar, Phys. Rev. Lett. 93, 198105 (2004).

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

Lipid Membrane Why coarse-graining?

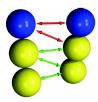
Solvent-free CG Model

Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension


Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Difficulties

- Implicit solvent models are incredibly common and useful in polymer physics.
- Why has it taken so long for them to appear in the field of membrane research?
 - Polymers don't first have to self assemble!
- One needs additional cohesion to make the lipids come together.
- Fluidity has proven to be the major challenge.

Lennard-Jones interactions:

- weak attraction \rightarrow gas phase
- no fluid phase in between?!
- strong attraction \rightarrow solid (gel) phase

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

.ipid Membrane Vhy coarse-graining?

Solvent-free CG Model

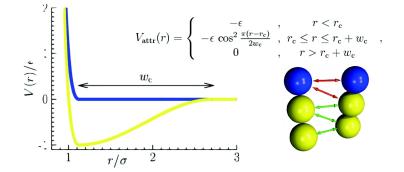
Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications


Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Model

- link three beads
- make lipid stiff
- nonbonded

$$V_{\text{bond}}(r) = -\frac{1}{2}k_{\text{bond}}r_{\infty}^{2}\ln\left[1 - (r/r_{\infty}^{2})\right]$$
$$V_{\text{bend}}(r_{13}) = \frac{1}{2}k_{\text{bend}}(r_{13} - 4\sigma)^{2}$$
$$W_{\text{bond}}(r) = 4\left[(r_{0})^{12} - (r_{0})^{6} + 1\right] O(r_{0})$$

$$W_{\text{rep}}(r) = 4\epsilon \left[\left(\frac{r_{\text{c}}}{r}\right)^{12} - \left(\frac{r_{\text{c}}}{r}\right)^{6} + \frac{1}{4} \right] \Theta(r_{\text{c-r}})^{6}$$

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

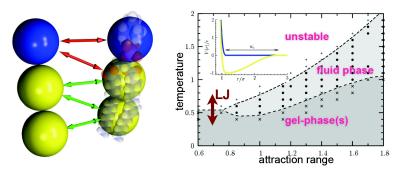
Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free

Model

Code Implementation


Propertie

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Overall phase behavior

Iong-range attractions "save" the system some entropy!

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free

Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Self-assembly

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Mode Solvent-free

Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

movies/self_assembly_1.mpg

Outline

ntroduction Lipid Membrane Why coarse-graining

Solvent-free CG Model

Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Implementation

mbtools architecture:

- engine (C)
 - interactions (lj-cos² interaction implemented as a FEATURE)
 - several analysis routines (e.g. modes, stress tensor)
- user-interface (Tcl)
 - system generation (e.g. initial particle positions)
 - parameters (configuration files)
 - register particles in ESPResSo (e.g. topology, interactions)
 - call to integrate command
 - analysis/output

Program structure located in:

ESPRESSO/packages/mbtools

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Program structure

mbtools is a Tcl package.

- set of Tcl functions
- (crude) version control

load package to get access to enclosed functions package require mbtools [1.0.0]

 ESPResSo loads mbtools during initialization (file ESPRESSO/scripts/init.tcl)

lappend auto_path "[pwd]/packages/mbtools/"

- auto_path contains the list of (sub)directories checked by the package loader
- use namespaces to avoid defining two functions with the same name

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Program structure

```
# Espresso/packages/mbtools/mbtools.tcl
#
```

```
package require ::mbtools::utils
package require ::mbtools::system_generation
package require ::mbtools::analysis
```

package provide mbtools 1.0.0

```
namespace eval mbtools {
```

ł

```
# Espresso/packages/mbtools/utils/setup.tcl
#
```

proc ::mbtools::utils::readcheckpoint { dir }

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

```
Solvent-free CG Model
Solvent-free
Model
```

Code Implementation

Properties

Membrane elasticity Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Config file example (incomplete...)

```
# .../mbtools/examples/simplebilayer.tcl
#
```

```
# define geometry
set geometry { geometry "flat -fixz" }
# time step
set main_time_step 0.01
# analysis
lappend analysis_flags pressure
```

From command line:

Espresso scripts/main.tcl simplebilayer.tcl

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Outline

troduction Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

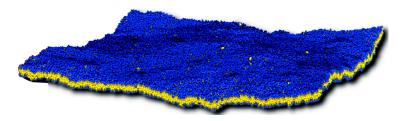
Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications


Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Membrane elasticity

Model membrane as a 2D elastic sheet (continuum theory)

$$E = \int dA \left\{ \frac{1}{2} \kappa K^2 + \sigma \right\} \simeq \frac{1}{2} \int dx dy \left\{ \kappa (\nabla^2 h)^2 + \sigma (\nabla h)^2 \right\}$$

- κ: bending modulus
- K: total curvature
- σ: surface tension
- h(x, y): height function (Monge gauge)

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

.ipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity

Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Bending modulus

Model membrane as a 2D elastic sheet (continuum theory)

$$E = \int dA \left\{ \frac{1}{2} \kappa K^2 + \sigma \right\} \simeq \frac{1}{2} \int dx dy \left\{ \kappa (\nabla^2 h)^2 + \sigma (\nabla h)^2 \right\}$$

- κ: bending modulus
- K: total curvature
- σ: surface tension
- h(x, y): height function (Monge gauge)
- Fourier expansion and equipartition theorem

$$\langle |h_{\mathbf{q}}|^2 \rangle = \frac{k_{\mathrm{B}}T}{L^2[\kappa q^4 + \underbrace{\sigma q^2}_{\text{set to 0}}]} = \frac{k_{\mathrm{B}}T}{L^2\kappa}q^{-4}$$

determine bending modulus κ

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity

Bending Line tension

Application

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Fluctuation spectrum from continuum theory

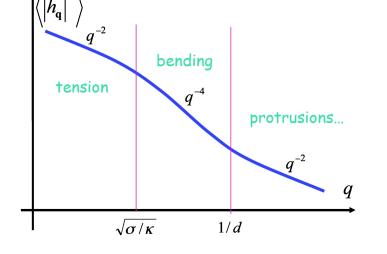
Mingyang Hu mingyang@cmu.edu

Introductio

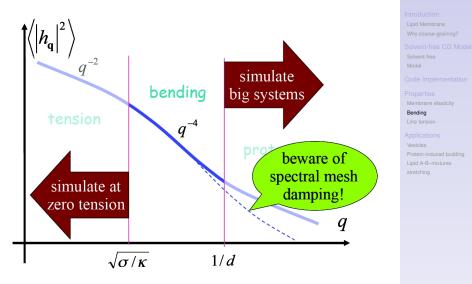
Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation


Properties

Membrane elasticity


Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Fluctuation spectrum from continuum theory

Carnegie Mellon

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

However...

- Equilibration time of Fourier modes scales like q⁻⁴
- Large bending modulus κ from small perturbation (k_BT) → small signal!

$$h(x) = h_{\mathbf{q}} e^{iqx} \rightarrow K = -h''(x) = h_{\mathbf{q}} q^2 e^{iqx}$$
$$\langle K^2 \rangle = \langle |h''(x)|^2 \rangle = q^4 \langle |h_{\mathbf{q}}|^2 \rangle = \frac{k_{\mathrm{B}}T}{L^2 \kappa}$$
$$\bar{R} = \frac{1}{\langle K^2 \rangle^{1/2}} = \sqrt{\frac{\kappa}{k_{\mathrm{B}}T}} L \simeq 3 \dots 5L$$

Result relevant for strong bending?

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

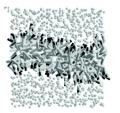
Lipid Membrane Why coarse-graining?

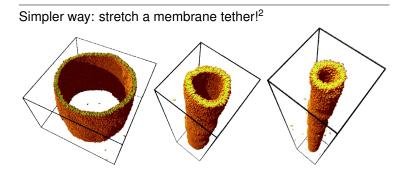
Solvent-free CG Mode Solvent-free Model

Code Implementation

Properties

Membrane elasticity


Bending Line tension


Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

κ from actively bent membranes

- first implementation:
 W.K. den Otter and W.J. Briels, J. Chem. Phys.
 118, 4712 (2003)
- Enforce large undulation mode, measure constraining force.

²V. A. Harmandaris and M. Deserno, J. Chem. Phys. **125**, 204905 (2006)

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

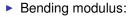
Membrane elasticity

Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

κ from actively bent membranes^3



$$E = \frac{\kappa}{2} \times \frac{1}{R^2} \times A$$

 $A = 2\pi RL$

Force:

$$F = \left(\frac{\partial E}{\partial L}\right)_A = \dots = \frac{2\pi\kappa}{R}$$

$$\kappa = \frac{FR}{2\pi} \simeq \frac{FR}{2\pi}$$

³V. A. Harmandaris and M. Deserno, J. Chem. Phys. **125**, 204905 (2006)

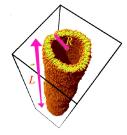
Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model


Code Implementation

Properties Membrane electicity

Bending

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

κ from actively bent membranes⁴

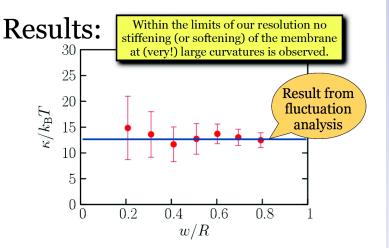
Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model


Code Implementation

Properties

Bending

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

⁴V. A. Harmandaris and M. Deserno, J. Chem. Phys. **125**, 204905 (2006)

Simpler way of extracting the line tension

Mesoscopic membranes

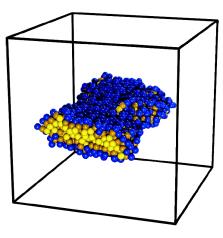
Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

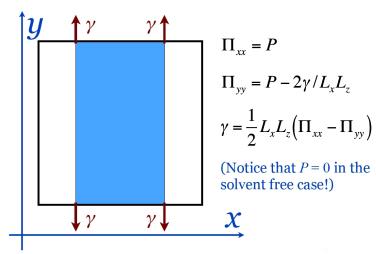
Solvent-free CG Model Solvent-free Model

Code Implementation


Propertie

Membrane elasticity

Line tension


Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

- simulate a periodically half-connected bilayer in a box
- stress tensor will be imbalanced precisely by twice the line tension!

Simpler way of extracting the line tension

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Outline

Introduction

Lipid Membrane Why coarse-graining?

Solvent-free CG Model

Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures stretching

- competition between bending rigidity and line tension ⁵
- sonicate vesicle solution: rip vesicles into bits and pieces!
- these (flat) pieces will merge and grow bigger
- at what point will they again close up and form vesicles?

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles

Protein-induced budding Lipid A-B-mixtures stretching

⁵"The size of bilayer vesicles generated by sonication", W. Helfrich, Physics Letters A, Vol 50, Issue 2, p. 115-116

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

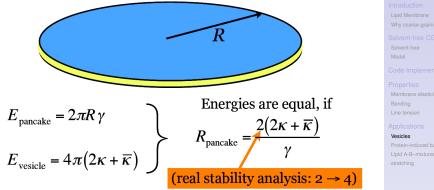
Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free

Code Implementation

Propertie


Membrane elasticity Bending Line tension

Applications

Vesicles

Protein-induced budding Lipid A-B-mixtures stretching

movies/c16sa.mpg

$$E_{\text{vesicle}} = 4\pi R^2 \cdot \left[\frac{1}{2}\kappa \left(\frac{1}{R} + \frac{1}{R}\right)^2 + \overline{\kappa}\frac{1}{R} \cdot \frac{1}{R}\right]$$
$$= 4\pi (2\kappa + \overline{\kappa})$$

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

What values do we expect?

•
$$\kappa = 20 k_{\rm B} T \simeq 80 \, {\rm pN} \cdot {\rm nm}$$

κ ≃ −*κ* (very little is known about *κ*, come back tomorrow!)
 γ ≃ 10 pN

•
$$R_{\text{pancake}} = \frac{4(2\kappa + \overline{\kappa})}{\gamma} \simeq \frac{4\kappa}{\gamma} \simeq \frac{320 \text{ pNnm}}{10 \text{ pN}} = 32 \text{ nm}$$

This is then also the diameter of vesicles we expect to find!

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

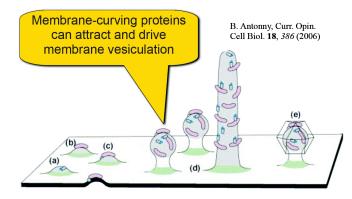
Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties


Membrane elasticity Bending Line tension

Applications

Vesicles

Protein-induced budding Lipid A-B-mixtures stretching

Protein-induced budding

Intuitive, but no physical justification!

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

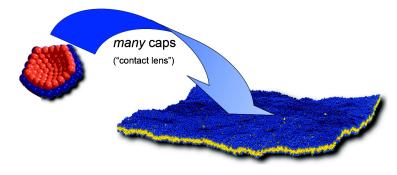
Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties


Membrane elasticity Bending Line tension

Application Vesicles

Protein-induced budding

Lipid A-B-mixtures stretching

Protein-induced budding⁶

- ▶ 36 curved caps, ~50,000 lipids
- > 160nm side-length, total time \sim 1ms
- no lateral tension
- no explicit interaction between caps

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Application: Vesicles

Protein-induced budding

Lipid A-B-mixtures stretching

⁶B.J. Reynwar et al., Nature **447**, 461 (2007)

Protein-induced budding⁷

movies/caps.avi

⁷B.J. Reynwar et al., Nature **447**, 461 (2007)

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Protein-induced budding

Protein-induced budding⁸

Some observations:

- Caps attract collectively
- Attractive pair-forces exist?
- No crystalline structure
- Cooperative vesiculation
- No "scaffolding"
- 50-100nm length scales
- several milliseconds

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

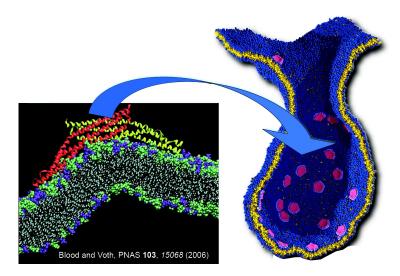
Introduction

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie


Membrane elasticity Bending Line tension

Application Vesicles

Protein-induced budding

Lipid A-B-mixtures stretching

Protein-induced budding⁹

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

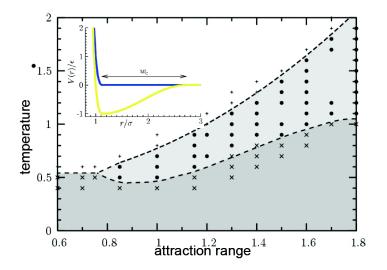
Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension


Application Vesicles

Protein-induced budding

Lipid A-B-mixtures stretching

⁹B.J. Reynwar et al., Nature **447**, 461 (2007)

Lipid A-B-mixtures

Mesoscopic membranes

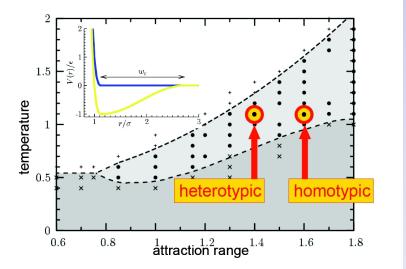
Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation


Propertie

Membrane elasticity Bending Line tension

Applications Vesicles Protein-induced budding

Lipid A-B-mixtures stretching

Lipid A-B-mixtures

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introduction

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Applications Vesicles

Lipid A-B-mixtures stretching

Lipid A-B-mixtures¹⁰

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding

Lipid A-B-mixtures stretching

movies/budding.mpg

¹⁰B.J. Reynwar & M. Deserno, Biointerphases 3, FA118 (2009)

Lipid A-B-mixtures¹¹

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

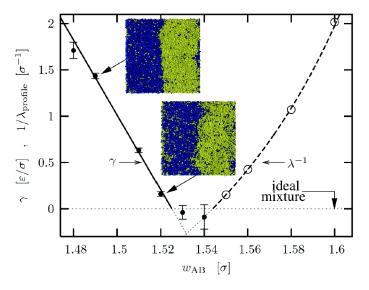
Solvent-free CG Model Solvent-free

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Applications


Vesicles Protein-induced budding

Lipid A-B-mixtures stretching

movies/spinodal.avi

¹¹from Sarah Veatch

Lipid A-B-mixtures

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

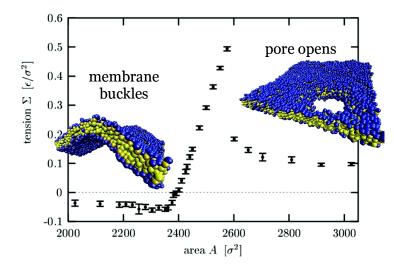
Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie


Membrane elasticity Bending Line tension

Applications Vesicles

Lipid A-B-mixtures stretching

 $w_{AB} < w_{AA} = w_{BB}$

stretching modulus¹²

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Propertie

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures

stretching

¹²i.r. cooke and m. deserno, j. chem. phys. **123**, 224710 (2005)

stretching modulus

simple theory:

farago, jcp, 2003; tolpekina/den otter/briels, jcp 2004; cooke/deserno, jcp 2005

membrane stretching plus line energy

$$e = \frac{1}{2}m\frac{(a-a_{\rm s}-\pi r^2)^2}{a_{\rm s}} + 2\pi\gamma r$$

rescaling of energy

equilibrium condition for pore radius

$$\lambda^3 = \frac{\gamma a_{\rm s}}{\pi m}, \quad \tilde{r} = \frac{r}{\lambda}, \quad b = \frac{a - a_{\rm s}}{\pi \lambda^2}$$

$$\tilde{r}^3 - b\tilde{r} + 1 = 0$$

Mesoscopic membranes

Mingyang Hu mingyang@cmu.edu

Introductio

Lipid Membrane Why coarse-graining?

Solvent-free CG Model Solvent-free Model

Code Implementation

Properties

Membrane elasticity Bending Line tension

Applications

Vesicles Protein-induced budding Lipid A-B-mixtures

stretching