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Overview

Scope of this lecture:

Hydrodynamic interactions in soft matter

Mesoscopic modeling

Thermal fluctuations and Brownian motion

Method:

Fluctuating lattice Boltzmann (FLB)

[B. Dünweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)]
[B. Dünweg, UDS, A. J. C. Ladd, Comp. Phys. Comm. 180, 605 (2009)]
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Time and length scales of (soft) matter
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Source: IFF, FZ Jülich

Mesoscopic scale bridges between microscopic and macroscopic scales

Microhydrodynamics links between Newton and Navier-Stokes
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Complex fluids: Multiphase systems

Source: Wikipedia, GFDL

Source: Universiteit Utrecht

Source: Emory University

Source: Wikimedia

Solutions, suspensions, emulsions: “contain” multiple length scales

→ Motion of the solutes and flow of the solvent are both important
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Hydrodynamic interactions (HI)

v

F

Flow field

Correlations:〈
∆ri ⊗∆rj

〉
= 2Dij (r)∆t

Without HI:

vi =
D0

kBT
Fi

With HI:

vi =
1

kBT ∑
j 6=i

Dij (r)Fj

Oseen tensor:

Dij (r) =
kBT

8πη r

(
1 +

r⊗ r

r2

)

→ Hydrodynamic interactions are long-ranged!
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Do we need to include hydrodynamic interactions?

Does a sailboat need sails?

Hydrodynamics make a fluid a fluid!

In many cases, long-range correlations due to HI can not be neglected.
(Unless HI are screened.)

There is no reason to neglect them in order to save computing time.
(Algorithms have become reasonably fast.)
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HI at microscopic level (Newton)

equation of motion in the overdamped limit (neglect inertia)

ri (t + ∆t) = ri (t) +
∆t

kBT ∑
j 6=i

DijFj (t) + ∆ri

correlation matrix 〈
∆ri ⊗∆rj

〉
= 2Dij∆t

→ Brownian Dynamics (BD)

difficulty: ∆ri requires matrix decomposition

Cholesky: O(N3), Chebychev expansion: O(N2.25), “P3M”: O(N1.25 lnN)

does not describe explicit momentum transport (often desired)
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HI at macroscopic level (Navier-Stokes)

Continuity equation
∂ρ

∂ t
+ ∇ · (ρu) = 0

Navier-Stokes equation

∂ (ρu)

∂ t
+ ∇ ·Π = ρf

Stress tensor

Π = ρc2
s 1 +

j⊗ j

ρ︸ ︷︷ ︸
Πeq

+η :

(
∇⊗ j

ρ

)
︸ ︷︷ ︸

Πvisc

+Πfluct

nonlinear partial differential equation
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Low Reynolds number: Stokes flow

incompressible Navier-Stokes equation (dimensionless form)

Re

(
∂v

∂ t
+ (v ·∇)v

)
=−∇p + ∇

2v + f

Re = ρvL/η small → neglect substantial derivative (inertia)

→ Stokes equation (dimensions reintroduced)

∇ ·σ = −∇p + η∇
2v =−ρf

∇ ·v = 0

boundary conditions → hard to solve for complex fluids
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From Newton to Navier-Stokes

Navier−Stokes equation

Boltzmann equation

Liouville equation

Newton’s equation

coarse−graining

molecular chaos

BBGKY

Chapman−Enskog

probabilistic description

Lattice−Boltzmann method

Particle Methods

→ Reduce the number of degrees of freedom by eliminating fast variables
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Mesoscopic modeling for hydrodynamics

hydrodynamic interactions: require conservation of mass and momentum

properties of the solvent: diffusion coefficient, viscosity, temperature,...

correct thermodynamics : required at least in equilibrium
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Overview of methods

Brownian dynamics (BD)

Direct simulation Monte Carlo (DSMC)

Multi-particle collision dynamics (MPC)

Dissipative particle dynamics (DPD)

Lattice gas automata (LGA)

Lattice Boltzmann (LB)
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Implicit solvent (BD) vs. explicit solvent (LB)

Schmidt number Sc = ν/D (diffusive
momentum transport vs. diffusive mass
transport)

BD LB

Sc = ∞ Sc � 1
Ma = 0 Ma� 1
Re = 0 Re� 1
Bo > 0 Bo > 0

Mach number Ma = v/c (flow velocity vs. speed of sound; importance of
fluid compressibility)

Reynolds number Re = vL/ν (convective vs. diffusive momentum
transport)

“Boltzmann number” Bo: ∆x/x (thermal fluctuation vs. mean value, on
the scale of an effective degree of freedom – depends on the degree of
coarse-graining!)

Remark: For particle methods, Bo = O(1); not so for discretized field
theories!
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Lattice Boltzmann

Hardy, Pomeau, de Pazzis (1973): 2D lattice gas model (HPP)

Frisch, Hasslacher, Pomeau (1986): lattice gas automaton (FHP)

d’Humières, Lallemand, Frisch (1986): 3D lattice gas automaton

McNamara and Zanetti (1988): lattice Boltzmann

Higuera and Jimenez (1989): linear collision operator

Koelman (1991): lattice BGK

Qian (1992): DnQm models

d’Humières, Luo and coworkers (1992-): multi-relaxation time models

Karlin and coworkers (1998-): entropic lattice Boltzmann

Ladd and coworkers (1993-): fluctuating lattice Boltzmann

...
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Lattice Boltzmann

Historic origin: lattice gas automaton
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Kinetic approach: The Boltzmann equation

evolution equation for the (one-)particle distribution function(
∂

∂ t
+ v · ∂

∂ r
+

F

m
· ∂

∂v

)
f (r,v,t) = C [f ]

Boltzmann collision operator

C [f ] =
∫

dv1

∫
dΩσ(vrel,Ω)vrel

[
f (r,v′,t)f (r,v′1,t)− f (r,v,t)f (r,v1,t)

]
Detailed balance

f (r,v′1,t)f (r,v′2,t) = f (r,v1,t)f (r,v2,t)

→ Equilibrium distribution (Maxwell-Boltzmann) f = f eq + f neq

ln f eq = γ0 + γ v + γ4v2
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Macroscopic moments

“average” of polynomials ψ(v) in components of v

mψ (r,t) =
∫

ψ(v) f (r,v,t)dv

density, momentum density, stress tensor

ρ(r,t) = m
∫

fdv

j(r,t) = m
∫

vfdv

Π(r,t) = m
∫

v⊗vfdv
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Separation of scales

Observation: not all mψ show up in the macroscopic equations of motion

ρ, j (and e) are collisional invariants∫
drdv

δmρ,j,e(f )

δ f
C [f ] = 0

local equilibrium (Maxwell-Boltzmann) f eq(ρ, j,e)

Hydrodynamics describes variation of ρ and j (and e) through transport
(over a macroscopic distance ∼ L)

all other variables relax rapidly through collisions (∼ λ mean free path)

→ scale separation: ε ∼ Kn = λ

L � 1 Knudsen number Kn = λ

L
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How can we exploit the scale separation?

we are only interested in the dynamics of the slow variables up to a
certain order

the dynamics of the fast variables beyond that order is unimportant

any set of fast variables that leaves the slow dynamics unchanged will do

→ the number of degrees of freedom can be greatly reduced!

Caveat: imperfect scale separation → fast variables can couple to slow
dynamics

skip derivation
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Discretization à la Grad

Truncated Hermite expansion

f N(r,v,t) = ω(v)
N

∑
n=0

1

n!
a(n)(r,t)H (n)(v)

(a(0) = ρ, a(1) = j, a(2) = Π−ρ1, . . . )

Gauss-Hermite quadrature

a(n) =
∫

H (n)(v)f N(r,v,t)dv = ∑
i

wi
H (n)(ci )f

N(r,ci ,t)

ω(ci )

= ∑H (n)(ci )fi (r,t)

→ Discrete velocity machine (DVM)

∂t fi + ciα ∂α fi =−λ (fi − f eq
i ).

∫
ω(v)p(r,v,t)dv = ∑

i

wi p(r,ci ,t)
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Space-time discretization

dfi
dt

+ λ fi = λ f eq
i .

Integration

fi (r + τci ,t + τ) = e−λτ fi (r,t) + λe−λτ

∫
τ

0
eλ t ′ f eq

i (r + t ′ci ,t + t ′)dt ′

Expansion

f eq
i (r + t ′ci ,t + t ′) = f eq

i (r,t) + t ′
f eq
i (r + τci ,t + τ)− f eq

i (r,t)

τ
+O(τ

2)

→ Fully discretized Boltzmann equation = Lattice Boltzmann

fi (r + τci ,t + τ) = fi (r,t)−λ
[
fi (r,t)− f eq

i (r,t)
]
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Quadratures
Quadrature LB model q bq wq cq

E3
1,5 D1Q3 0 1 2

3 0

1 2 1
6 ±

√
3

E9
2,5 D2Q9 0 1 4

9 (0,0)

1 4 1
9 (±

√
3,0),(0,±

√
3)

2 4 1
36 (±

√
3,±
√

3)

E15
3,5 D3Q15 0 1 2

9 (0,0,0)

1 6 1
9 (±

√
3,0,0),(0,±

√
3,0),(0,0,

√
3)

3 8 1
72 (±

√
3,±
√

3,±
√

3)

E19
3,5 D3Q19 0 1 1

3 (0,0,0)

1 6 1
18 (±

√
3,0,0),(0,±

√
3,0),(0,0,

√
3)

2 12 1
36 (±

√
3,±
√

3,0),(±
√

3,0,±
√

3),(0,±
√

3,±
√

3)

E27
3,5 D3Q27 0 1 8

27 (0,0,0)

1 6 2
27 (±

√
3,0,0),(0,±

√
3,0),(0,0,

√
3)

2 12 1
54 (±

√
3,±
√

3,0),(±
√

3,0,±
√

3),(0,±
√

3,±
√

3)

3 8 1
216 (±

√
3,±
√

3,±
√

3)

Notation En
D,d : D dimensions, d degree, n abscissae

q: neighbor shell, bq : number of neighbors, wq weights, cq velocities

T(n) = ∑
i

wici . . .ci =

{
0 n odd

δ
(n) n even

, ∀n ≤ d .
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Models with polynomial equilibrium

Ansatz: expansion in the velocities u (Euler stress is quadratic in u)

f eq
i (ρ,u) = wi ρ

[
1 +Au ·ci +B(u ·ci )

2 +Cu2
]

cubic symmetry of lattice tensors T(n)

∑
i

wi = 1 ∑
i

wiciα = 0

∑
i

wiciαciβ = σ2 δαβ ∑
i

wiciαciβ ciγ = 0

∑
i

wiciαciβ ciγciδ = κ4 δαβγδ + σ4
(
δαβ δγδ + δαγ δβδ + δαδ δβγ

)
→ at least three shells required to satisfy the conditions

∑
i

wi = 1 κ4 = 0 σ4 = σ
2
2 c2

s = σ2
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The lattice Boltzmann equation

recall the linear Boltzmann equation(
∂

∂ t
+ v · ∂

∂ r

)
f (r,v,t) = L [f (r,v,t)− f eq(v)]

f (r,v,t): distribution function L : linear collision operator
f eq(v): Maxwell-Boltzmann distribution

systematic discretization → lattice Boltzmann equation

fi (r + τci ,t + τ) = f ∗i (r,t) = fi (r,t) +∑
j

Lij

[
fj (r,t)− f eq

j (ρ,u)
]

fi (r,t): population number τ: discrete time step
r: discrete lattice point ci : discrete velocity vector
f eq
i (ρ,u): equilibrium distribution Lij : collision matrix
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The D3Q19 model

Equilibrium distribution:

f eq
i (ρ,u) = wi ρ

[
1 +

u ·ci

c2
s

+
uu : (cici − c2

s 1)

2c4
s

]
Moments:

∑
i

f eq
i = ρ

∑
i

f eq
i ci = ρu

∑
i

f eq
i cici = ρc2

s 1 + ρuu

Weight coefficients:

wi = 1/3 for |ci |= 0, wi = 1/18 for |ci |= 1, wi = 1/36 for |ci |=
√

2

Speed of sound: cs = 1√
3

(
a
τ

)
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The LB algorithm

1 streaming step: move f ∗i (r,t) along ci

to the next lattice site, increment t by τ

fi (r + τci ,t + τ) = f ∗i (r,t)

2 collision step: apply Lij and compute
the post-collisional f ∗i (r,t) on every
lattice site

f ∗i (r,t) = f (r,t)+∑
j

Lij

[
fj (r,t)− f eq

j (ρ,u)
]

D3Q19 lattice
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Hydrodynamic moments in lattice Boltzmann

hydrodynamic fields are velocity moments of the populations

ρ = ∑
i

fi ρu = ∑
i

fici Π = ∑
i

fici ⊗ci

construct orthogonal basis eki for moments (recall ψ(v) and mψ )

mk = ∑
i

eki fi

0≤ k ≤ 9: hydrodynamic modes (slow), k ≥ 10: kinetic modes (fast)

collision matrix is diagonal in mode space

L (f− feq) = M−1
(

ML M−1
)

M(f− feq) = M−1L̂ (m−meq)

→ MRT model
(mk −meq

k )∗ = γk(mk −meq
k )
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Choice of the moment basis

m0 = ρ = ∑
i

fi mass

m1 = jx = ∑
i

ficix momentum x

m2 = jy = ∑
i

ficiy momentum y

m3 = jz = ∑
i

ficiz momentum z

m4 = tr(Π) bulk stress

m5, . . . ,m9 ' Π shear stresses

m10, . . . ,m18 “kinetic modes”, “ghost modes”
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Multiple relaxation time model (MRT)

γ0 = γ1 = γ2 = γ3 = 0 mass and momentum conservation

γ4 = γb bulk stress

γ5 = . . . = γ9 = γs shear stress

γ10 = . . . = γ18 = 0 simplest choice, careful with boundaries!

Remark: we could also relax the populations directly:

f neq∗
i = ∑

j

Lij f
neq
j

simplest choice Lij = λ−1δij → lattice BGK

not a particularly good choice (less stable, less accurate)
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Viscous stress relaxation

Π = Π +
1

3
tr(Π)1

recall: collision step applies linear relaxation to the moments

Π
∗neq

= γsΠ
neq

tr(Π∗neq) = γbtr(Πneq)

Chapman-Enskog expansion leads to Chapman-Enskog

−1

2
(Π∗neq + Πneq) = σ = η

(
∇u + (∇u)t

)
+

(
ηb−

2

3
η

)
(∇ ·u)1

→ shear and bulk viscosities are determined by the relaxation parameters

η =
ρc2

s τ

2

1 + γs

1− γs
ηb =

ρc2
s τ

3

1 + γb

1− γb
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Viscosity of the lattice Boltzmann fluid

incompressible Navier-Stokes equation is recovered

−1 −0.5 0 0.5 1
0

1

2

3

γ
s

η

Viscosity in natural units

−1≤ γs ≤ 1 ⇔ positive viscosities

→ any viscosity value is accessible
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Units in LB

grid spacing a, time step τ, particle mass mp

these merely control the accuracy and stability of LB!

physically relevant: mass density ρ, viscosity η, temperature kBT

recall: c2
s =

1

3

a2

τ2
= ĉ2

s
a2

τ2

η =
ρc2

s τ

2

1 + γs

1− γs
= ρ̂ ĉ2

s η̂
mp

aτ

kBT = mpc2
s = mp ĉ2

s
a2

τ2

→ always make sure you are simulating the right physics!

→ for comparison with experiments: match dimensionless numbers!
(Ma, Re, Pe, Sc, Kn, Pr , Wi , De, ...)
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Coupling of particles and fluid

y∆a−

∆x ∆xa−

y∆
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

��

(1,1)

(0,0) (1,0)

(0,1)

[Ahlrichs and Dünweg, J. Chem. Phys. 111, 8225 (1999)]

Idea: treat monomers as point particles and apply Stokesian drag

F =−ζ [V−u(R,t)] + fstoch

ensure momentum conservation by transferring momentum to the fluid

dissipative force
→ add stochastic force to fulfill fluctuation-dissipation relation
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Coupling of particles and fluid

y∆a−

∆x ∆xa−

y∆
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

��

(1,1)

(0,0) (1,0)

(0,1)

[Ahlrichs and Dünweg, J. Chem. Phys. 111, 8225 (1999)]

interpolation scheme

u(R,t) = ∑
x∈Cell

δxu(x,t)

momentum transfer

−∆t

a3
F = ∆j =

µ

a2τ
∑

x∈Cell
∑
i

∆fi (x,t)ci
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“Bare” vs. effective friction constant

the input friction ζbare is not the real friction

D0 > kBT/ζbare (due to long time tail)

V =
1

ζbare
F + uav u≈ 1

8πηr
(1 + r̂ ⊗ r̂)F uav =

1

gηa
F

1

ζeff
=

1

ζbare
+

1

gηa

Stokes contribution from interpolation with range a

→ this regularizes the theory (no point particles in nature!)

ζbare has no physical meaning!
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Finite size effects

Study diffusion / sedimentation of a single object

L = ∞: u(r)∼ 1/r

F ∼ ηRv = ηR2(v/R)

area R2, shear gradient v/R

backflow due to momentum conservation

additional shear gradient v/L

additional force ηR2(v/L) = ηRv(R/L)

finite size effect ∼ R/L
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Thermal fluctuations

so far the LB model is athermal and entirely deterministic

for Brownian motion, we need fluctuations!

10 100 1000 10000
time steps

0.1

1

 v 
 v

0

Velocity relaxation
of a single particle

deterministic!

T
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Do we need fluctuations?

If you go to the beach, do you bring a swimsuit?

Ideal gas, temp. T , particle mass mp , sound speed cs :

kBT = mpc2
s

cs ∼ a/h (a lattice spacing, h time step)

cs as small as possible

Example (water):
mass density ρ = 103kg/m3

sound speed realistic: 1.5×103m/s
sound speed artificial: cs = 102m/s
temperature T ≈ 300K , kBT = 4×10−21

particle mass: mp = 4×10−25kg

macroscopic scale molecular scale
lattice spacing a = 1mm a = 1nm
time step h = 10−5s h = 10−11s
mass of a site ma = 10−6kg ma = 10−24kg

“Boltzmann Bo = (mp/ma)1/2 Bo = (mp/ma)1/2

number” = 6×10−10 = 0.6
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Low Mach number physics

LB requires u� ci hence u� cs

→ low Mach number Ma = u/cs � 1 → compressibility does not matter

→ equation of state does not matter → choose ideal gas!
mp particle mass

p =
ρ

mp
kBT

c2
s =

∂p

∂ρ
=

1

mp
kBT

p = ρc2
s

kBT = mpc2
s
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Generalized lattice gas model (GLG)

consider integer population numbers (mp mass of an LB particle)

νi =
fi
µ

µ =
mp

a3
µνi = wi ρ

each lattice site in contact with a heat bath

Possion + constraints

P ({νi}) ∝ ∏
i

ν̄
νi
i

νi !
e−ν̄i δ

(
µ ∑

i

νi −ρ

)
δ

(
µ ∑

i

νici − j

)

[B. Dünweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)]
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Entropy

associated entropy

P ∝ exp[S ({νi})]δ

(
µ ∑

i

νi −ρ

)
δ

(
µ ∑

i

νici − j

)

Stirling: νi ! = exp(νi lnνi −νi )

S ({νi}) =−∑
i

(νi lnνi −νi −νi ln ν̄i + ν̄i )

=
1

µ
∑
i

ρwi

(
fi

ρwi
− fi

ρwi
ln

fi
ρwi
−1

)
→ µ controls the mean square fluctuations (degree of coarse-graining)
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Maximum entropy principle

maximize entropy S subject to constraints for mass and momentum
conservation

∂S

∂νi
+ χ + λ ·ci = 0 µ ∑

i

νi −ρ = 0 µ ∑
i

νici − j = 0

formal solution

f eq
i = wi ρ exp(χ + λ ·ci )

expansion up to O(u2)

f eq
i (ρ,u) = wi ρ

[
1 +

u ·ci

c2
s

+
uu : (cici − c2

s 1)

2c4
s

]
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Fluctuations around equilibrium

Gauss distribution for non-equilibrium part

P ∝ exp

(
−∑

i

(
f neq
i

)2

2µρwi

)
δ

(
∑
i

f neq
i

)
δ

(
∑
i

ci f
neq
i

)

transform to the modes (bk = ∑i wie
2
ki , Basis eki )

P
({

mneq
k

})
∝ exp

(
− ∑

k≥4

(
mneq

k

)2

2µρbk

)

more convenient: ortho-normal modes

m̂k = ∑
i

êki
fi√

wi µρ

Ulf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012



Implementation of the fluctuations

introduce stochastic term into the collision step

m∗neq
k = γkmneq

k + ϕk rk

rk random number from normal distribution

ensure detailed balance (like in Monte-Carlo)

p(m→m∗)

p(m∗→m)
=

exp(−m∗2/2)

exp(−m2/2)
⇒ ϕk =

√
µρbk

(
1− γ2

k

)
ϕk 6= 0 for all non-conserved modes

→ all modes have to be thermalized

[A. J. C. Ladd, JFM 271, 285–309 (1994)]
[Adhikari et al., EPL 71, 473-479 (2005)]

[B. Dünweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)]
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Lattice representation of rigid objects

determine the points where the surface of the rigid object intersects the
lattice links

→ surface markers

“Accounting for these constraints may be trivial un-
der idealized conditions [...] but generally speaking,
it constitutes a very delicate (and sometimes nerve-
probing!) task.”

Sauro Succi
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Boundary conditions

specular reflectionbounce back slip−reflection

r s=1−r

these rules are simple to implement

but they are only correct to first order

the boundary location is always midway in between nodes
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Interpolation boundary conditions

rbcibr − rb ci+ cibr − rb rb ci+ rbcibr − rb ci+

q > 1/2 q

C D A B

q’q < 1/2

BDACC D A B

fi−(rB ,t + τ) = 2qf ∗i (rB ,t) + (1−2q)f ∗i (rB − τci ,t), q <
1

2
,

fi−(rB ,t + τ) =
1

2q
f ∗i (rB ,t) +

2q−1

2q
f ∗i−(rB ,t), q ≥ 1

2
.

[Bouzidi et al., Phys. Fluids 13, 3452 (2001)]
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Multi-reflection boundary conditions

r
b
ci−r

b
ci−2 r

b
r
b
ci+

κ
1

κ−2 κ0κ−1κ−1

q

?

fi−(rB ,t + τ) = f ∗i (rB ,t)− 1−2q−2q2

(1 +q)2
f ∗i−(rB ,t) +

1−2q−2q2

(1 +q)2
f ∗i (r− τci ,t)

− q2

(1 +q)2
f ∗i−(r− τci ,t) +

q2

(1 +q)2
f ∗i (r−2τci ,t).

match Taylor expansion at the boundary with Chapman-Enskog result

→ yields a condition for the relaxation rate of the kinetic modes

λg (λs) =−8
2 + λ

8 + λ

[Ginzburg and d’Humières, Phys. Rev. E 68, 066614 (2003).]
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Equilibrium interpolation

f eq
i− (rB ,t + τ) = 2qf eq

i (rB ,t) + (1−2q)f eq
i (rB − τci ,t) q <

1

2

f eq
i− (rB ,t + τ) =

1−q

q
f eq
i (r,t) +

2q−1

q
f eq
i (rB +qτci ) q ≥ 1

2

f neq
i− (rB ,t + τ) = f neq

i (rB ,t)

[Chun and Ladd, Phys. Rev. E 75, 066705 (2007)]

interpolation for equilibrium

bounce-back for non-equilibrium

non-equilibrium enters Chapman-Enskog one order later than equilibrium

→ still second order accurate!
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Lattice Boltzmann in ESPResSo

setmd box l $Lx $Ly $Lz
setmd periodic . . .

cellsystem domain decomposition -no verlet list

lbfluid density $lb dens grid $lb grid tau $lb tau
lbfluid viscosity $lb visc
lbfluid friction $lb zeta
thermostat lb $temp

lb boundary wall $px $py $pz normal $nx $ny $nz

integrate $nsteps

puts [analyze fluid mass]
puts [analyze fluid momentum]
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Summary of lattice Boltzmann

lattice kinetic approach to hydrodynamics

easy to implement and to parallelize

solid theoretical underpinning

consistent thermal fluctuations

beyond Navier-Stokes: possible but can get complicated

challenges: non-ideal fluids, multi-phase fluids, thermal flows
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Want more?

Dünweg and Ladd: “Lattice Boltzmann simulations of soft matter systems”
Adv. Polymer Sci. 221, 89–166 (2009)

Aidun and Clausen: “Lattice-Boltzmann Method for Complex Flows”
Annu. Rev. Fluid Mech. 42, 439–472 (2010)
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Eliminating fast variables: Chapman-Enskog

introduce length and time scales

coarse-grained length: r1 = εr → ∂

∂ r
= ε

∂

∂ r1

convective time scale: t1 = εt

diffusive time scale: t2 = ε
2t → ∂

∂ t
= ε

∂

∂ t1
+ ε

2 ∂

∂ t2

use ε as a perturbation parameter and expand f

f = f (0) + εf (1) + ε
2f (2) + . . .

C [f ] = C [f (0)] + ε

∫
drdv

δC [f ]

δ f
f (1)(r,v) + . . .

→ solve for each order in ε
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Chapman-Enskog expansion

ε0: yields the collisional invariants, and the equilibrium distribution
f (0) = f eq

ε1: yields the Euler equations, and the first order correction f (1)

(
∂

∂ t1
+ v

∂

∂ r1

)
f (0) =

∫
dr′dv′

δC [f (0)]

δ f (0)
f (1)(r′,v′) (*)

ε2: adds viscous terms to the Euler equation

→ Navier-Stokes!

the “only” difficulty is: no explicit solution of (*) is known...
(except for Maxwell molecules)
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Chapman-Enskog expansion for LB

original LBE
fi (r + τci ,t + τ)− fi (r,t) = ∆i

recall: coarse-grained length r1, convective time scale t1, diffusive time
scale t2

fi (r1 + ετci ,t1 + ετ,t2 + ε
2
τ)− fi (r1,t1,t2) = ∆i

Taylor expansion:

ετ

(
∂

∂ t1
+ ci ·

∂

∂ r1

)
fi + ε

2
τ

[
∂

∂ t2
+

τ

2

(
∂

∂ t1
+ ci ·

∂

∂ r1

)]
fi = ∆i
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Chapman-Enskog expansion for LB

expand fi and ∆i in powers of ε

fi = f
(0)
i + εf

(1)
i + ε

2f
(2)
i + . . .

∆i = ∆
(0)
i + ε∆

(1)
i + . . .

hierarchy of equations at different powers of ε

O(ε
0) : ∆

(0)
i = 0

O(ε
1) :

(
∂

∂ t1
+ ci ·

∂

∂ r1

)
f

(0)
i =

1

τ
∆

(1)
i

O(ε
2) :

[
∂

∂ t2
+

τ

2

(
∂

∂ t1
+ ci ·

∂

∂ r1

)2
]

f
(0)
i +

(
∂

∂ t1
+ ci ·

∂

∂ r1

)
f

(1)
i =

1

τ
∆

(2)
i
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Zeroth order ε0

no expansion for conserved quantities!

f
(0)
i = f eq

i

ρ
(0) = ρ = ∑

i

f eq
i

j(0) = j = ∑
i

f eq
i ci

linear part of collision operator

∆i = ε∆
(1)
i = ε ∑

j

∂ ∆i

∂ fj

∣∣∣∣
f (0)

f
(1)
j = ∑

j

Lij f
(1)
j
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Equations for the mass density

∂

∂ t1
ρ +

∂

∂ r1
· j = 0

∂

∂ t2
ρ = 0

→ continuity equation holds!
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Equations for the momentum density

∂

∂ t1
j +

∂

∂ r1
·Π(0) = 0

∂

∂ t2
j +

1

2

∂

∂ r1
·
(

Π∗(1) + Π(1)
)

= 0

Euler stress

Π(0) = ρc2
s 1 + ρuu = Πeq

Newtonian viscous stress

ε

2

(
Π∗(1) + Π(1)

)
=−Πvisc

→ incompressible Navier-Stokes equation holds!
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Diggin’ deeper...

the third moment Φ(0) = ∑i f
(0)
i cicici enters through its equilibrium part!

∂

∂ t1
Π(0) +

∂

∂ r1
·Φ(0) =

1

τ
∑
i

∆
(1)
i cici =

1

τ

(
Π∗(1)−Π(1)

)
explicit form

Φ
(0)
αβγ

= ρc2
s

(
uα δβγ +uβ δαγ +uγ δαβ

)
from continuity and Euler equation

∂

∂ t1
Π(0) =

∂

∂ t1

(
ρc2

s 1 + ρuu
)

= . . .

neglecting terms of O(u3)

Π∗(1)−Π(1) = ρc2
s τ
(
∇u + (∇u)t

)
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Suitable LB models

equilibrium values of the moments up to Φeq

ρ
eq = ρ

jeq = j

Πeq = ρc2
s 1 + ρuu

Φeq
αβγ

= ρc2
s

(
uα δβγ +uβ δαγ +uγ δαβ

)
collision operator

∑
i

∆i = 0 ∑
i

∆ici = 0

Π
∗neq

= γsΠ
neq

tr(Π∗neq) = γbtr(Πneq)
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Why all parts need to be thermalized?

Equations of motion are stochastic differential equations

Fokker-Planck formalism

→ Kramers-Moyal expansion

Particle, conservative : L1 = −∑
i

(
∂

∂ ri
· pi

mi
+

∂

∂pi
·Fi

)
Particle, Langevin : L2 = ∑

i

Γi

mi

∂

∂pi
pi

Particle, stochastic : L3 = kBT ∑
i

Γi
∂ 2

∂p2
i

Fluctuation-Dissipation relation(
∑
i

Li

)
exp(−βH ) = 0
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Why all parts need to be thermalized?

Particle, conservative : L1 = −∑
i

(
∂

∂ ri
· pi

mi
+

∂

∂pi
·Fi

)
Fluid, conservative: L4 =

∫
dr

(
δ

δρ
∂α jα +

δ

δ jα
∂β Πeq

αβ

)
Fluid, viscous: L5 = ηαβγδ

∫
dr

δ

δ jα
∂β ∂γuδ

Fluid, stochastic: L6 = kBTηαβγδ

∫
dr

δ

δ jα
∂β ∂γ

δ

δ jδ

Particle, coupling: L7 = −∑
i

ζi
∂

∂piα
uiα

Fluid, coupling: L8 = −∑
i

ζi

∫
dr∆(r,ri )

δ

δ jα (r)

(
piα

mi
−uiα

)
Fluid, stochastic: L9 = kBT ∑

i

ζi

∫
dr∆(r,ri )

δ

δ jα (r)

∫
dr′∆(r′,ri )

δ

δ jα (r′)

Particle, stochastic: L10 = −2kBT ∑
i

ζi
∂

∂piα

∫
dr∆(r,ri )

δ

δ jα (r)
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