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Overview

Scope of this lecture:

= Hydrodynamic interactions in soft matter
= Mesoscopic modeling

= Thermal fluctuations and Brownian motion

Method:

= Fluctuating lattice Boltzmann (FLB)

[B. Diinweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)]
[B. Diinweg, UDS, A. J. C. Ladd, Comp. Phys. Comm. 180, 605 (2009)]
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Time and length scales of (soft) matter
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Source: IFF, FZ Jiilich
= Mesoscopic scale bridges between microscopic and macroscopic scales

= Microhydrodynamics links between Newton and Navier-Stokes
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Complex fluids: Multiphase systems

Source: Wikipedia, GFDL

= Solutions, suspensions, emulsions: “contain” multiple length scales

— Motion of the solutes and flow of the solvent are both important
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Hydrodynamic interactions (HI)

Flow field
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Correlations:

<AI’,‘ ®Arj> = 2D,-J-(r)At

Without HI:

D,
= O F
kg T

v;
With HI:
1
Vi = ——= Z D,'j (r)Fj
ke T iZ;

Oseen tensor:

kBT rer
Dij(r) = 8N r (1+ ,T)

— Hydrodynamic interactions are long-ranged!
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Do we need to include hydrodynamic interactions?

= Does a sailboat need sails?
= Hydrodynamics make a fluid a fluid!

= In many cases, long-range correlations due to HI can not be neglected.
(Unless HI are screened.)

= There is no reason to neglect them in order to save computing time.
(Algorithms have become reasonably fast.)
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HI at microscopic level (Newton)

= equation of motion in the overdamped limit (neglect inertia)
At
r,-(t—l—At) = I','(t) +-— Z DUFJ(t) + Ar;
ke T iZ;

= correlation matrix

<Ar,- ® Al‘j> =2DjAt
— Brownian Dynamics (BD)
= difficulty: Ar; requires matrix decomposition

« Cholesky: &(N3), Chebychev expansion: ¢(N?2%), “P3M": G(N125In N)

= does not describe explicit momentum transport (often desired)
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HI at macroscopic level (Navier-Stokes)

= Continuity equation

p
= Navier-Stokes equation
d(pu) _
3t +V-M=pf

= Stress tensor

I'I:pc521+y%+n : (V@%)_H—'fluct

e I-Ivisc

= nonlinear partial differential equation

UIf D. Schiller Hydrodynamics with ESPResSo

#) JOLICH

FORSCHUNGSZENTRUM

October 11th, 2012



UFfi6RIbA 4 J0LICH

Low Reynolds number: Stokes flow

= incompressible Navier-Stokes equation (dimensionless form)

Re (%—F(V'V)V) = —Vp+V2v—|—f

= Re=pvl/n small — neglect substantial derivative (inertia)

— Stokes equation (dimensions reintroduced)

V.6 = —Vp4+nV3v=—pf
Viw = 0

= boundary conditions — hard to solve for complex fluids
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From Newton to Navier-Stokes

Navier—Stokes equation I4

A

A

Chapman-Enskog | Lattice—Boltzmann method |

| Boltzmann equation

A molecular chaos

BBGKY

coarse—graining
Liouville equation
A probabilistic description

Newton’s equation

Particle Methods

— Reduce the number of degrees of freedom by eliminating fast variables

UIf D. Schiller
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Mesoscopic modeling for hydrodynamics

» hydrodynamic interactions: require conservation of mass and momentum

= properties of the solvent: diffusion coefficient, viscosity, temperature,...

= correct thermodynamics : required at least in equilibrium
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Overview of methods

Brownian dynamics (BD)

Direct simulation Monte Carlo (DSMC)
Multi-particle collision dynamics (MPC)
Dissipative particle dynamics (DPD)

Lattice gas automata (LGA)

Lattice Boltzmann (LB)
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Implicit solvent (BD) vs. explicit solvent (LB)

| BD | LB |
= Schmidt number Sc = v/D (diffusive Sc=o | Sc>1
momentum transport vs. diffusive mass Ma=0 | Mak1
transport) Re=0 | Rex1
Bo>0 | Bo>0

= Mach number Ma = v/c (flow velocity vs. speed of sound; importance of
fluid compressibility)

= Reynolds number Re = vL/v (convective vs. diffusive momentum
transport)

= “Boltzmann number” Bo: Ax/x (thermal fluctuation vs. mean value, on
the scale of an effective degree of freedom — depends on the degree of
coarse-graining!)

= Remark: For particle methods, Bo = O(1); not so for discretized field
theories!
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Lattice Boltzmann

= Hardy, Pomeau, de Pazzis (1973): 2D lattice gas model (HPP)

= Frisch, Hasslacher, Pomeau (1986): lattice gas automaton (FHP)

= d'Humiéres, Lallemand, Frisch (1986): 3D lattice gas automaton

= McNamara and Zanetti (1988): lattice Boltzmann

= Higuera and Jimenez (1989): linear collision operator

= Koelman (1991): lattice BGK

= Qian (1992): DnQm models

= d'Humigres, Luo and coworkers (1992-): multi-relaxation time models
= Karlin and coworkers (1998-): entropic lattice Boltzmann

= Ladd and coworkers (1993-): fluctuating lattice Boltzmann
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Lattice Boltzmann

Historic origin: lattice gas automaton
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Kinetic approach: The Boltzmann equation

= evolution equation for the (one-)particle distribution function

(% %+F ;)f(rvt)— €[f]

= Boltzmann collision operator
“1f] = / dvr / Q6 (vrel, Q) vier [F(1 VL O)F(r,Vh, 1) — (0w, £) (1 w1, 1)
= Detailed balance
F(r,vh, t)f(r,vh,t) = f(r,ve, t)f(r,va,t)

— Equilibrium distribution (Maxwell-Boltzmann) f = 94 f"ed

Infe9 = 35+ yv + v

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012




UFfi6RIbA 4 J0LICH

Macroscopic moments

= ‘“average” of polynomials y(v) in components of v

my(r, t) :/w(v) f(r,v,t)dv

= density, momentum density, stress tensor

m/fdv
jr,t) = m/vfdv

Ner,t) = m/v®vfdv

p(r.t)
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Separation of scales

= Observation: not all my show up in the macroscopic equations of motion

= p,j(and e) are collisional invariants
/ drdv ‘6( ompie(f) ey _ g
= local equilibrium (Maxwell-Boltzmann) £%(p,j, e)

= Hydrodynamics describes variation of p and j (and e) through transport
(over a macroscopic distance ~ L)

= all other variables relax rapidly through collisions (~ A mean free path)

— scale separation: €~ Kn= % <1 Knudsen number Kn= %
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How can we exploit the scale separation?

= we are only interested in the dynamics of the slow variables up to a
certain order

= the dynamics of the fast variables beyond that order is unimportant
= any set of fast variables that leaves the slow dynamics unchanged will do

— the number of degrees of freedom can be greatly reduced!

= Caveat: imperfect scale separation — fast variables can couple to slow
dynamics

» skip derivation

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Discretization a la Grad

= Truncated Hermite expansion

v, t) = o) 3 =2 (e, 020 w)
7 7 n! b

n=0

(a(o) :p’ a(l) :j’ 3(2) = n —p]_' .. )
= Gauss-Hermite quadrature

a(")—/% D) (v t)dv—z

i

%( ( ,')fN(I',C,',t)
o(ci)

—ij c;)fi(r,t)

— Discrete velocity machine (DVM)
Defi + Ciodafy = —A(f— £°9).
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Space-time discretization

df;
d—lj+/lﬁ- =Af59.

= Integration

T !
f(r+1ci, t+1)=e *Th(r, ) +7Le‘“/0 M E ettt 4+t dt!

= Expansion

£59(r+ tej, t+ 1) — £29(r, t)

p. +ﬁ(7:2)

£+ e t+t') = £59(r,t) + ¢
— Fully discretized Boltzmann equation = Lattice Boltzmann

fi(r+1ci, t+ 1) = fi(r,t) — A [fi(r,t) — £59(r, 1)]
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Quadratures
[ Quadrature | LB model [ g [ by [ wq cq
E3g D1Q3 0] 1 3 0
1 2 E +V3
Ejs D2Q9 0 1 E (0,0)
1 4 E (£v/3,0),(0,£+/3)
2 4 a6 (+£v/3,£/3)
E D3Q15 0 1 (0,0,0)
1 6 (++/3,0,0), (0,+/3,0),(0,0,v/3)
3 8 7 (£v3,£V3,+£V3)
E3% D3Q19 0 1 3 (0,0,0)
1 6 1% (£+/3,0,0),(0,+v/3,0),(0,0,v/3)
2 12 Erd (£v/3,£1/3,0), (+£v/3,0,£/3),(0,+1/3,+1/3)
E3L D3Q27 0 1 = (0,0,0)
1 6 2 (+/3,0,0), (0,++/3,0),(0,0,v/3)
2 12 2 (£v/3,£v/3,0), (+V/3,0,£+/3),(0,+1/3,+1/3)
3 8 15 (+v/3,+v3,£V3)

Notation EB e D dimensions, d degree, n abscissae
q: neighbor shell, bg: number of neighbors, wg weights, cq velocities

0 n odd

, Vn<d.
§(M 1 even n

T(n) :ZW,'C,‘...C,':
i

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012




IVE TY of
UFiiokioh Y
Models with polynomial equilibrium

= Ansatz: expansion in the velocities u (Euler stress is quadratic in u)
££9%(p,u) = wip [l—l—Au ¢+ B(u-c¢;)*+ Cu2}
= cubic symmetry of lattice tensors T(M
Zw,-:l ZWiCiaZO
i i
Z WiCio Cig = 02 Ogp Z W;Cig CigCiy =0
i i
Y wiciaCigCiyCis = Ka Supys + 04 (8up Sys + aydps + Sasdpy)
i

— at least three shells required to satisfy the conditions

ZW,'ZI k4 =0 0'4:(722 C52=(72
i

JULICH
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The lattice Boltzmann equation
= recall the linear Boltzmann equation
2 2 f(rv,t)=2[f(r,v,t)— I
at+v.ar (r7V7 )_ [ (r,v, )_ (V)]

f(r,v,t): distribution function £ linear collision operator
f®4(v): Maxwell-Boltzmann distribution

= systematic discretization — lattice Boltzmann equation

f;‘(l’-’-TC,', t+T) = f;-*(l', t) = f;'(ra t)+Z$J [f}(ra t) — f:,'eq(pvu):l
J

f;(r,t): population number T: discrete time step
r: discrete lattice point c;: discrete velocity vector
24(p,u): equilibrium distribution % collision matrix

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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The D3Q19 model

Equilibrium distribution:

) 2
eq o u-c; uu: (cic;—csl)
o (p,u)=wip |1+ e +Ts COTTT T &
Moments:

Yi=p

1

Zf’.eqc,- = pu

1
Y fcic; = pc21l+puu
i

Weight coefficients:
wj=1/3 for|c;|=0, w;=1/18 for|c;|=1, w;=1/36 for |c;|=V2

Speed of sound:  ¢s = % (2)

T
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The LB algorithm

#) JOLICH
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streaming step: move f*(r,t) along c;
to the next lattice site, increment t by 7

fi(r+ e, t+ 1) =£(r,t)

collision step: apply .Zj; and compute D3Q19 lattice

the post-collisional £;*(r,t) on every
lattice site

()= F(r )+ L 25 [(r.6)— £9(p.u)
J

UIf D. Schiller Hydrodynamics with ESPResSo
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Hydrodynamic moments in lattice Boltzmann

= hydrodynamic fields are velocity moments of the populations
p=)f pu=) fic; N=) fic;®c;
i i i
= construct orthogonal basis ey for moments (recall y(v) and my)
me =Y eif;
i
0 < k <9: hydrodynamic modes (slow), k > 10: kinetic modes (fast)

= collision matrix is diagonal in mode space

L(F—f9) =M1 (M,?M*l) M(f — £9) = M~1.2(m — m®9)

— MRT model
(mg —m )" = yi(my — m )

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012




UFfi6RIbA 4 J0LICH

Choice of the moment basis

UIf D. Schiller

mo=p =Y
1

my = jx :Zficix
i

my = jy, :Zficiy

i
m3 =jz =) fici,
i

mg = tr(M)
m5,...,mgzl'l
mio,..., M8

mass

momentum x
momentum y
momentum z

bulk stress
shear stresses

“kinetic modes”, “ghost modes”

Hydrodynamics with ESPResSo

October 11th, 2012
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Multiple relaxation time model (MRT)

Yo=7=7%=73=0 mass and momentum conservation
Ya=7p bulk stress
Y5 =...=%Y =7Ys shear stress

Yo=...=7%g =0 simplest choice, careful with boundaries!

= Remark: we could also relax the populations directly:

neq* fned
Z ij _/

= simplest choice .Z; = 1_18,-}- — lattice BGK

= not a particularly good choice (less stable, less accurate)
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Viscous stress relaxation

n=nN+ %tr(l’l)l

= recall: collision step applies linear relaxation to the moments

ﬁ*neq _ yﬁneq
- S
tr(M*"9) = yptr(M"9)
= Chapman-Enskog expansion leads to > Chapman-Enskog

1 2
-5 (M"ed 4 N"e9) = 6 = (Vu+ (Vu)®) + (nb - §n> (V-u)l
— shear and bulk viscosities are determined by the relaxation parameters

_peitlty _p2tlty
T2 1-% Mb="37"1y,

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Viscosity of the lattice Boltzmann fluid

= incompressible Navier-Stokes equation is recovered

Viscosity in natural units

= —1 <7 <1 < positive viscosities

— any viscosity value is accessible

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Units in LB

= grid spacing a, time step 7, particle mass m,
= these merely control the accuracy and stability of LB!

= physically relevant: mass density p, viscosity 1, temperature kg T

2 2
= recall: 8:5‘1:“21
S 312 g2
2
:pcsfl""yS:ﬁ/QﬁJ
21— *1ar
2
2 ~24
kg T = mpcs = mpe; 2

— always make sure you are simulating the right physics!

— for comparison with experiments: match dimensionless numbers!
(Ma, Re, Pe, Sc, Kn, Pr, Wi, De, ...)

UIf D. Schiller Hydrodynamics with ESPResSo
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Coupling of particles and fluid

o]

[¢) ‘ [¢)

Lol o on @y
lo o
° d a-Ay
O ol
Q
©lo o o| o ©
O 1
o} ° ol¢ R
° o o LAY
o ° 9 |o Ty 1(0,0) (1,0
AX a-Ax

[Ahlrichs and Diinweg, J. Chem. Phys. 111, 8225 (1999)]
Idea: treat monomers as point particles and apply Stokesian drag

F=—C[V—u(R,t)] + fstoch

= ensure momentum conservation by transferring momentum to the fluid
= dissipative force

— add stochastic force to fulfill fluctuation-dissipation relation

UIf D. Schiller
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Coupling of particles and fluid
9] 9 ) A 1
Fot—to ‘ S L ©1) IR @1
—to ° L
© d a-Ay’
O ol -
e o 5 6 °
(©] -
o o . 4 N
° ° o LAY S
= CIEC 10,0 -(10
AX a-Ax
[Ahlrichs and Diinweg, J. Chem. Phys. 111, 8225 (1999)]
= interpolation scheme
u(R,t)= Y &u(x,t)
xeCell
= momentum transfer
Ate_nj= Af(
xECeII i

UIf D. Schiller
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“Bare” vs. effective friction constant

= the input friction {pare is not the real friction

s Dy > kg T /pare (due to long time tail)
1

1 1
V= F+u, ur —— (1+7QF7)F u,, = —F

Cbare 8rnr gna

111
Cefr Cbare  &Ma

= Stokes contribution from interpolation with range a

— this regularizes the theory (no point particles in nature!)

= Cpare has no physical meaning!

UIf D. Schiller Hydrodynamics with ESPResSo
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Finite size effects

Study diffusion / sedimentation of a single object
- L=oo u(r)~1/r T
+ F~nRv=nR%*/R)

= area R2, shear gradient v/R

= backflow due to momentum conservation
= additional shear gradient v/L

« additional force nR?(v/L) =nRv(R/L)

= finite size effect ~ R/L ~=

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Thermal fluctuations

= so far the LB model is athermal and entirely deterministic
= for Brownian motion, we need fluctuations!
Velocity relaxation

of a single particle
T T

deterministic!

0.1

|
10 100 1000 10000
time steps
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Do we need fluctuations?

UNIVERSITY of
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If you go to the beach, do you bring a swimsuit?

= lIdeal gas, temp. T, particle mass mp, sound speed c;:

2
kB T = mpCq

= ¢s~ a/h (a lattice spacing, h time step)

= ¢ as small as possible

Example (water):
mass density p = 103kg/m?

sound speed realistic: 1.5 x 103m/s
sound speed artificial: cs =102m/s

#) JOLICH

FORSCHUNGSZENTRUM

temperature T ~ 300K, kg T =4 x 1072

particle mass: mp =4 x 10 Bkg

macroscopic scale

molecular scale

lattice spacing
time step
mass of a site
“Boltzmann
number”

a=1mm
h=10"5s
m,=10"%g
Bo = (mp/m,)
=6x10"10

1/2

a=1nm
h=10"11s
m, =10"%kg

Bo = (mp/m,)!/?
=0.6

UIf D. Schiller
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Low Mach number physics

= LB requires u < ¢j hence u < ¢
— low Mach number Ma=u/c; < 1 — compressibility does not matter

— equation of state does not matter — choose ideal gas!

m,, particle mass

p=L kst
mp
ap 1
2
2P kgT
S ap mp B
p=pc?

2
kg T = mpcg

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Generalized lattice gas model (GLG)

= consider integer population numbers (mp mass of an LB particle)
_fi _Mp —
=t u-

= each lattice site in contact with a heat bath

= Possion + constraints
wio
P({vi}) = Hﬁew@ <NZVi —P) J (#Z\’ici —J'>
i Vie i i
[B. Diinweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)]

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Entropy

= associated entropy

Poexp[S({vi})] 6 <.UZV:'—P) s (“Zvici—j)
= Stirling: vl =exp(vilnv; —V;)

S({vih) = _Z(Vilnvi_vi_viln Vi+Vi)

*ZP< filfl)

F pwi pWI pw;i

— U controls the mean square fluctuations (degree of coarse-graining)

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Maximum entropy principle

» maximize entropy S subject to constraints for mass and momentum
conservation

)
W"‘X"_ACI:O ”Zvi_p:() [J.ZV,‘C,'—j:O
i i i

= formal solution
9 =wipexp(x+4-c;)
« expansion up to &(u?)
u-c; uu: (cic;—c21)

eq _
fi (pvu)_Wip 1+ C52 + 2C§

UIf D. Schiller Hydrodynamics with ESPResSo
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Fluctuations around equilibrium

= Gauss distribution for non-equilibrium part

e FE (el

= transform to the modes (by =Y ; W,-e,%,-, Basis e;)

P(ini) e~ £ )

k>4 2“'pbk

= more convenient: ortho-normal modes

Zk:W

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Implementation of the fluctuations
= introduce stochastic term into the collision step
*neq

ne
m " =Yem, T+ prri

ri random number from normal distribution
= ensure detailed balance (like in Monte-Carlo)
p(m—m*) _ exp(-m2/2) Jipb =7
= = = by (1—
p(m* —m) ~ exp(—m?/2) P = \/upbi (1=%)

= @ # 0 for all non-conserved modes

— all modes have to be thermalized
[A. J. C. Ladd, JFM 271, 285-309 (1994)]

[Adhikari et al., EPL 71, 473-479 (2005)]
[B. Diinweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)]
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Lattice representation of rigid objects

= determine the points where the surface of the rigid object intersects the
lattice links

— surface markers

“Accounting for these constraints may be trivial un-
der idealized conditions [...] but generally speaking,
it constitutes a very delicate (and sometimes nerve-

probing!) task.”
SAURO Succlt

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Boundary conditions

;-I-I-I

s=1-r

bounce back specular reflection slip-reflection

= these rules are simple to implement

= but they are only correct to first order

= the boundary location is always midway in between nodes

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Interpolation boundary conditions

(o] B B
| |
€ TG TG
* % 1
fi-(rg, t+7) =2qf(rp,t) + (1 —2q)f(rg — 7c;, t), 9< 5,
1 2g—1 1
fi’(rB7t+T):£fi*(rB7t)+ a fii(rB7t)7 ng

[Bouzidi et al., Phys. Fluids 13, 3452 (2001)]

UIf D. Schiller Hydrodynamics with ESPResSo October 11th, 2012
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Multi-reflection boundary conditions

R=2¢; R=Ci 7 RA+C
- - m------ --{}---0---
e . .
K
q
2q—2q> 2q—2q>
fi-(rg, t+7)=Ff(r 71?—71” ,t —|—7F*r Tc;,
I(B ) I(B) (1+q) (B) (1+) ( I)
q ¢
i (r—7c;, t)+ 5 f; (r—21c¢;, t).

(1+q)2 (1+ q)?
= match Taylor expansion at the boundary with Chapman-Enskog result
— yields a condition for the relaxation rate of the kinetic modes
2+7L
8+7L
[Ginzburg and d’Humiéres, Phys. Rev. E 68, 066614 (2003).]

Ag(As) =
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Equilibrium interpolation

S (rg, t+17) =2qf(rg, t) + (1 —2q)f Y(rg — 1c;, t) aq

A

Q
Y]
N~ N -

(et 1) = L)+ 2 (v + e
£79(rg, t+7) = £"*9(rp, t)
[Chun and Ladd, Phys. Rev. E 75, 066705 (2007)]
= interpolation for equilibrium
= bounce-back for non-equilibrium
= non-equilibrium enters Chapman-Enskog one order later than equilibrium

— still second order accurate!
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Lattice Boltzmann in ESPResSo

setmd box_| $Lx $Ly $Lz
setmd periodic ...

cellsystem domain_decomposition -no_verlet_list
Ibfluid density $Ib_dens grid $Ib_grid tau $lb_tau
Ibfluid viscosity $Ib_visc

Ibfluid friction $lb_zeta

thermostat Ib $temp

Ib_boundary wall $px $py $pz normal $nx $ny $nz

integrate $nsteps

puts [analyze fluid mass]
puts |analyze fluid momentum]
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Summary of lattice Boltzmann

= lattice kinetic approach to hydrodynamics

= easy to implement and to parallelize

= solid theoretical underpinning

= consistent thermal fluctuations

= beyond Navier-Stokes: possible but can get complicated

= challenges: non-ideal fluids, multi-phase fluids, thermal flows
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Want more?

1

Diinweg and Ladd: “Lattice Boltzmann simulations of soft matter systems’
Adv. Polymer Sci. 221, 89-166 (2009)

Aidun and Clausen: “Lattice-Boltzmann Method for Complex Flows"
Annu. Rev. Fluid Mech. 42, 439-472 (2010)
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Eliminating fast variables: Chapman-Enskog

= introduce length and time scales

coarse-grained length: r=¢er — —=¢g—
& € or ory

convective time scale: t; =€t
diffusive time scale: =€t —» —=
2 Jot oty dtr

use € as a perturbation parameter and expand f

fo= O e pe2r@
5C[f]
Cf] CIf ]+£/drdv SF A (rv)+...

— solve for each order in €
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Chapman-Enskog expansion

= €0 yields the collisional invariants, and the equilibrium distribution
£(0) — feq

- el yields the Euler equations, and the first order correction £(1)

) 8C[FO)]
I (0) / (1) !\, *
<at1+"ar1> /d Yoy S FO(E ) ()

= €2 adds viscous terms to the Euler equation
— Navier-Stokes!

= the “only” difficulty is: no explicit solution of (*) is known...
(except for Maxwell molecules)
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Chapman-Enskog expansion for LB

= original LBE
fi(r+tc;, t+1)—fi(r,t) = A

= recall: coarse-grained length ry, convective time scale t;, diffusive time
scale tp

fi(ry +etci, t + €T, to +€27) — fi(ry, t1, o) = A

’ Taylor expansion: ‘

a-i-c 0 fi+e%c a-l—E i-kc- J fi=A
atl ’8 8 2 atl ’8r1
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Chapman-Enskog expansion for LB

= expand f; and A; in powers of €
fo= fi(o)+€fi(1)+52fi(2)+“'
A = AP peaM o
= hierarchy of equations at different powers of ¢
o(e%: A =0
o(el) (i c..i) £0) %Agn

oty ! ary
(0) J .. J (1)
fl. +<9t1 +c; 5r1)f’

Jd 19 d
2y . _
ﬁ(&‘ ) [8t2 + 2 (8t1 tei al’1>
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Zeroth order £°

= no expansion for conserved quantities!
(0) _  (eq
0 = 5
p(O) _ p:Zﬁeq
1
i

i = j=Yff

i

= linear part of collision operator

A = sA(l)—eZ (1) Zf £

36 OR
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Equations for the mass density

90,
8t1p ory 1=
0

a0

— continuity equation holds!
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Equations for the momentum density

Jd. d

A § (e

aty + or1 L 0

d 10

iy -2 (@ @) =
(9t2j+2al'1 (n +n ) 0

= Euler stress

’ N = pc21 + puu = Med

= Newtonian viscous stress

% (n*(l) +n(1)) — _qvisc

— incompressible Navier-Stokes equation holds!
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Diggin’ deeper...

« the third moment ®(®) = Y f,-(o)c,-c,-c,- enters through its equilibrium part!

J 9 1 1
O no; 2 0ty a1 (pm_po
O+ g0 Tz,"‘A’ cje; =~ (M@ —n)

= explicit form

(0)
¢<XI37

=pc? (ua53y+ ug Say + uyﬁaﬁ)

= from continuity and Euler equation

d d
on M an (pc51—|—puu)

« neglecting terms of @(u®)

M@ —n® = p2r (Vu+ (Vu)?)
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Suitable LB models

= equilibrium values of the moments up to ¢4

pt = p

=

n< = pc2l+puu

¢2‘°}3y = pcsz(uaéﬁ},—l—uﬁ&xy—i—uySaﬁ)

= collision operator
ZA,' =0 ZA,’C,‘ =0
i i

ﬁ*neq _ ySﬁneq tr(l'l*”eq) _ ybtr(nneq)
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Why all parts need to be thermalized?

= Equations of motion are stochastic differential equations

= Fokker-Planck formalism

— Kramers-Moyal expansion

Particle, conservative: 27 = —; (air, . %’, + aip, . Fi)
Particle, Langevin: % = Y, Ti ipi
= m; dp;
92
Particle, stochastic: %3 = kg Tz,-" F,-aT)2

= Fluctuation-Dissipation relation
(Zﬁ) exp(—BA#) =0
i

UIf D. Schiller Hydrodynamics with ESPResSo

October 11th, 2012



UNIVERSITY of '
UF fioRiba  910LicH
Why all parts need to be thermalized?

. . . _ J P/ J .
Particle, conservative: 4 = 72,-" <97Y, . ;, + Tp, .F,)
. . 5 . e
Fluid, conservative: % = /dr ﬁam (9;;” q
o 8
Fluid, viscous: % = naﬁﬂ;/dr—_aﬁayua
Sju
Fluid, stochastic: % = ksT / ar 30,2
, : 6 = B I Napys Sia By is
Particle, coupling: % = _ZCiiU/‘a
=~ Ipia
Fluid, coupling: % = —ZC;/drA(r r;)i Pia Ui
’ - T 8 (r) \ m;
Fluid, stochastic: % = k TZC-/drA(r r-)i/dr'A(r’ >
’ . 9 B - i 2 b Si (r) s Fi Sja(r’)
Particle, stochastic: %9 = —2kg TZC, /drA r r,)é ")
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