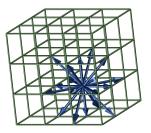
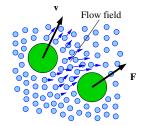
"Simulating Soft Matter with ESPResSo, ESPResSo++ and VOTCA" ESPResSo Summer School 2012 @ ICP, Stuttgart University

Coupling Molecular Dynamics and Lattice Boltzmann to simulate Hydrodynamics and Brownian motion





Ulf D. Schiller u.schiller@fz-juelich.de

Institute of Complex Systems, Theoretical Soft Matter and Biophysics Forschungszentrum Jülich

Overview

Scope of this lecture:

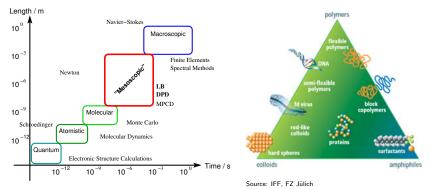
- Hydrodynamic interactions in soft matter
- Mesoscopic modeling
- Thermal fluctuations and Brownian motion

Method:

• Fluctuating lattice Boltzmann (FLB)

[B. Dünweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)] [B. Dünweg, UDS, A. J. C. Ladd, Comp. Phys. Comm. 180, 605 (2009)]

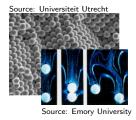
Time and length scales of (soft) matter

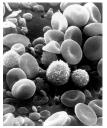


- Mesoscopic scale bridges between microscopic and macroscopic scales
 - Microhydrodynamics links between Newton and Navier-Stokes

Complex fluids: Multiphase systems

Source: Wikipedia, GFDL

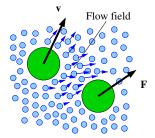




Source: Wikimedia

- Solutions, suspensions, emulsions: "contain" multiple length scales
- $\rightarrow\,$ Motion of the solutes and flow of the solvent are both important

Hydrodynamic interactions (HI)



Without HI:

$$\mathbf{v}_i = \frac{D_0}{k_B T} \mathbf{F}_i$$

With HI:

$$\mathbf{v}_i = rac{1}{k_B T} \sum_{j \neq i} \mathsf{D}_{ij} \left(\mathbf{r} \right) \mathbf{F}_j$$

Oseen tensor:

$$\mathsf{D}_{ij}(\mathbf{r}) = \frac{k_B T}{8\pi\eta r} \left(1 + \frac{\mathbf{r} \otimes \mathbf{r}}{r^2} \right)$$

Correlations:

$$\langle \Delta \mathbf{r}_i \otimes \Delta \mathbf{r}_j \rangle = 2 \mathsf{D}_{ij}(\mathbf{r}) \Delta t$$

→ Hydrodynamic interactions are long-ranged!

Do we need to include hydrodynamic interactions?

- Does a sailboat need sails?
- Hydrodynamics make a fluid a fluid!
- In many cases, long-range correlations due to HI can not be neglected. (Unless HI are screened.)
- There is no reason to neglect them in order to save computing time. (Algorithms have become reasonably fast.)

HI at microscopic level (Newton)

equation of motion in the overdamped limit (neglect inertia)

$$\mathbf{r}_i(t + \Delta t) = \mathbf{r}_i(t) + \frac{\Delta t}{k_B T} \sum_{j \neq i} \mathsf{D}_{ij} \mathbf{F}_j(t) + \Delta \mathbf{r}_i$$

correlation matrix

$$\left\langle \Delta \mathbf{r}_{i} \otimes \Delta \mathbf{r}_{j} \right\rangle = 2 \mathsf{D}_{ij} \Delta t$$

- \rightarrow Brownian Dynamics (BD)
 - difficulty: $\Delta \mathbf{r}_i$ requires matrix decomposition
 - Cholesky: $\mathcal{O}(N^3)$, Chebychev expansion: $\mathcal{O}(N^{2.25})$, "P3M": $\mathcal{O}(N^{1.25} \ln N)$
- does not describe explicit momentum transport (often desired)

HI at macroscopic level (Navier-Stokes)

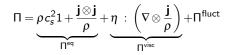
Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Navier-Stokes equation

$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot \boldsymbol{\Pi} = \rho \mathbf{f}$$

Stress tensor



nonlinear partial differential equation

Low Reynolds number: Stokes flow

incompressible Navier-Stokes equation (dimensionless form)

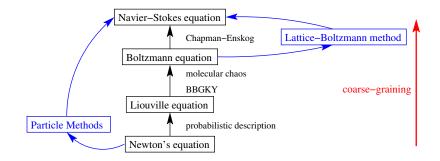
$$Re\left(rac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\cdot\nabla)\mathbf{v}
ight) = -
abla p +
abla^2\mathbf{v} + \mathbf{f}$$

- $Re = \rho v L/\eta$ small \rightarrow neglect substantial derivative (inertia)
- → Stokes equation (dimensions reintroduced)

$$\nabla \cdot \boldsymbol{\sigma} = -\nabla \boldsymbol{\rho} + \eta \nabla^2 \mathbf{v} = -\rho \mathbf{f}$$
$$\nabla \cdot \mathbf{v} = 0$$

• boundary conditions \rightarrow hard to solve for complex fluids

From Newton to Navier-Stokes



 \rightarrow Reduce the number of degrees of freedom by *eliminating fast variables*

Mesoscopic modeling for hydrodynamics

- hydrodynamic interactions: require conservation of mass and momentum
- properties of the solvent: diffusion coefficient, viscosity, temperature,...
- correct thermodynamics : required at least in equilibrium

Overview of methods

- Brownian dynamics (BD)
- Direct simulation Monte Carlo (DSMC)
- Multi-particle collision dynamics (MPC)
- Dissipative particle dynamics (DPD)
- Lattice gas automata (LGA)
- Lattice Boltzmann (LB)

Implicit solvent (BD) vs. explicit solvent (LB)

 Schmidt number Sc = v/D (diffusive momentum transport vs. diffusive mass transport)

BD	LB
$Sc = \infty$	$Sc \gg 1$
Ma = 0	$Ma \ll 1$
<i>Re</i> = 0	$\textit{Re} \ll 1$
<i>Bo</i> > 0	Bo > 0

- Mach number Ma = v/c (flow velocity vs. speed of sound; importance of fluid compressibility)
- Reynolds number Re = vL/v (convective vs. diffusive momentum transport)
- "Boltzmann number" Bo: $\Delta x/x$ (thermal fluctuation vs. mean value, on the scale of an effective degree of freedom depends on the degree of coarse-graining!)
- Remark: For particle methods, Bo = O(1); not so for discretized field theories!

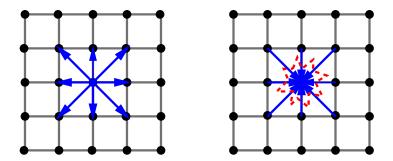
Lattice Boltzmann

- Hardy, Pomeau, de Pazzis (1973): 2D lattice gas model (HPP)
- Frisch, Hasslacher, Pomeau (1986): lattice gas automaton (FHP)
- d'Humières, Lallemand, Frisch (1986): 3D lattice gas automaton
- McNamara and Zanetti (1988): lattice Boltzmann
- Higuera and Jimenez (1989): linear collision operator
- Koelman (1991): lattice BGK
- Qian (1992): DnQm models
- d'Humières, Luo and coworkers (1992-): multi-relaxation time models
- Karlin and coworkers (1998-): entropic lattice Boltzmann
- Ladd and coworkers (1993-): fluctuating lattice Boltzmann

^{• ...}

Lattice Boltzmann

Historic origin: lattice gas automaton



Kinetic approach: The Boltzmann equation

- evolution equation for the (one-)particle distribution function

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial}{\partial \mathbf{v}}\right) f(\mathbf{r}, \mathbf{v}, t) = \mathscr{C}[f]$$

Boltzmann collision operator

$$\mathscr{C}[f] = \int d\mathbf{v}_1 \int d\Omega \,\sigma(\mathbf{v}_{\mathsf{rel}}, \Omega) \,\mathbf{v}_{\mathsf{rel}} \left[f(\mathbf{r}, \mathbf{v}', t) f(\mathbf{r}, \mathbf{v}_1', t) - f(\mathbf{r}, \mathbf{v}, t) f(\mathbf{r}, \mathbf{v}_1, t) \right]$$

Detailed balance

$$f(\mathbf{r},\mathbf{v}_1',t)f(\mathbf{r},\mathbf{v}_2',t) = f(\mathbf{r},\mathbf{v}_1,t)f(\mathbf{r},\mathbf{v}_2,t)$$

 \rightarrow Equilibrium distribution (Maxwell-Boltzmann) $f = f^{eq} + f^{neq}$

$$\ln f^{\rm eq} = \gamma_0 + \gamma \mathbf{v} + \gamma_4 \mathbf{v}^2$$

Macroscopic moments

• "average" of polynomials $\psi(\mathbf{v})$ in components of \mathbf{v}

$$m_{\psi}(\mathbf{r},t) = \int \psi(\mathbf{v}) f(\mathbf{r},\mathbf{v},t) d\mathbf{v}$$

density, momentum density, stress tensor

$$\rho(\mathbf{r}, t) = m \int f d\mathbf{v}$$
$$\mathbf{j}(\mathbf{r}, t) = m \int \mathbf{v} f d\mathbf{v}$$
$$\Pi(\mathbf{r}, t) = m \int \mathbf{v} \otimes \mathbf{v} f d\mathbf{v}$$

Separation of scales

- Observation: not all m_{ψ} show up in the macroscopic equations of motion
- ρ, j (and e) are collisional invariants

$$\int d\mathbf{r} d\mathbf{v} \frac{\delta m_{\rho,\mathbf{j},e}(f)}{\delta f} \mathscr{C}[f] = 0$$

- local equilibrium (Maxwell-Boltzmann) $f^{eq}(\rho, \mathbf{j}, e)$
- Hydrodynamics describes variation of ρ and j (and e) through transport (over a macroscopic distance ~ L)
- all other variables relax rapidly through *collisions* ($\sim \lambda$ mean free path)

scale separation:
$$\varepsilon \sim Kn = \frac{\lambda}{L} \ll 1$$
 Knudsen number $Kn = \frac{\lambda}{L}$

How can we exploit the scale separation?

- we are only interested in the dynamics of the slow variables up to a certain order
- the dynamics of the fast variables beyond that order is unimportant
- any set of fast variables that leaves the slow dynamics unchanged will do
- \rightarrow the number of degrees of freedom can be greatly reduced!
- Caveat: imperfect scale separation \rightarrow fast variables can couple to slow dynamics

skip derivation

Discretization à la Grad

Truncated Hermite expansion

$$f^{N}(\mathbf{r}, \mathbf{v}, t) = \omega(\mathbf{v}) \sum_{n=0}^{N} \frac{1}{n!} a^{(n)}(\mathbf{r}, t) \mathscr{H}^{(n)}(\mathbf{v})$$
$$(a^{(0)} = \rho, a^{(1)} = \mathbf{j}, a^{(2)} = \Pi - \rho \mathbf{1}, \dots)$$

Gauss-Hermite quadrature

$$\mathbf{a}^{(n)} = \int \mathscr{H}^{(n)}(\mathbf{v}) f^{N}(\mathbf{r}, \mathbf{v}, t) \, d\mathbf{v} = \sum_{i} w_{i} \, \frac{\mathscr{H}^{(n)}(\mathbf{c}_{i}) f^{N}(\mathbf{r}, \mathbf{c}_{i}, t)}{\omega(\mathbf{c}_{i})}$$
$$= \sum \mathscr{H}^{(n)}(\mathbf{c}_{i}) f_{i}(\mathbf{r}, t)$$

 \rightarrow Discrete velocity machine (DVM)

$$\partial_t f_i + c_{i\alpha} \partial_\alpha f_i = -\lambda (f_i - f_i^{eq}).$$

Space-time discretization

$$\frac{df_i}{dt} + \lambda f_i = \lambda f_i^{\text{eq}}.$$

Integration

$$f_i(\mathbf{r}+\tau\mathbf{c}_i,t+\tau) = e^{-\lambda\tau}f_i(\mathbf{r},t) + \lambda e^{-\lambda\tau}\int_0^{\tau} e^{\lambda t'}f_i^{\text{eq}}(\mathbf{r}+t'\mathbf{c}_i,t+t')\,dt'$$

Expansion

$$f_i^{\text{eq}}(\mathbf{r}+t'\mathbf{c}_i,t+t') = f_i^{\text{eq}}(\mathbf{r},t) + t'\frac{f_i^{\text{eq}}(\mathbf{r}+\tau\mathbf{c}_i,t+\tau) - f_i^{\text{eq}}(\mathbf{r},t)}{\tau} + \mathcal{O}(\tau^2)$$

 \rightarrow Fully discretized Boltzmann equation = Lattice Boltzmann

1

$$f_i(\mathbf{r} + \tau \mathbf{c}_i, t + \tau) = f_i(\mathbf{r}, t) - \lambda \left[f_i(\mathbf{r}, t) - f_i^{eq}(\mathbf{r}, t) \right]$$

Quadratures

Quadrature	LB model	q	b _q	wq	cq
$E_{1,5}^3$	D1Q3	0	1	23	0
1,0		1	2	Ĭ	$\pm\sqrt{3}$
$E_{2,5}^{9}$	D2Q9	0	1	4 9	(0,0)
		1	4	19	$(\pm\sqrt{3},0),(0,\pm\sqrt{3})$
		2	4	$\frac{1}{36}$	$(\pm\sqrt{3},\pm\sqrt{3})$
$E_{3,5}^{15}$	D3Q15	0	1	<u>36</u> g	(0,0,0)
· · · ·		1	6	19	$(\pm\sqrt{3},0,0),(0,\pm\sqrt{3},0),(0,0,\sqrt{3})$
		3	8	1 72	$(\pm\sqrt{3},\pm\sqrt{3},\pm\sqrt{3})$
$E_{3.5}^{19}$	D3Q19	0	1	13	(0,0,0)
- /-		1	6	118	$(\pm\sqrt{3},0,0),(0,\pm\sqrt{3},0),(0,0,\sqrt{3})$
		2	12	$\frac{1}{36}$	$(\pm\sqrt{3},\pm\sqrt{3},0),(\pm\sqrt{3},0,\pm\sqrt{3}),(0,\pm\sqrt{3},\pm\sqrt{3})$
E ²⁷ _{3,5}	D3Q27	0	1	18 1 27 27 27 27 1 54 216	(0,0,0)
		1	6	27	$(\pm\sqrt{3},0,0),(0,\pm\sqrt{3},0),(0,0,\sqrt{3})$
		2	12	<u>1</u> 54	$(\pm\sqrt{3},\pm\sqrt{3},0),(\pm\sqrt{3},0,\pm\sqrt{3}),(0,\pm\sqrt{3},\pm\sqrt{3})$
		3	8	1 216	$(\pm\sqrt{3},\pm\sqrt{3},\pm\sqrt{3})$

Notation $E_{D,d}^n$: D dimensions, d degree, n abscissae

q: neighbor shell, b_q : number of neighbors, w_q weights, c_q velocities

$$\mathsf{T}^{(n)} = \sum_{i} w_i \mathbf{c}_i \dots \mathbf{c}_i = \begin{cases} 0 & n \text{ odd} \\ \delta^{(n)} & n \text{ even} \end{cases}, \quad \forall n \leq d.$$

Models with polynomial equilibrium

Ansatz: expansion in the velocities u (Euler stress is quadratic in u)

$$f_i^{\text{eq}}(\rho, \mathbf{u}) = w_i \rho \left[1 + A\mathbf{u} \cdot \mathbf{c}_i + B(\mathbf{u} \cdot \mathbf{c}_i)^2 + C\mathbf{u}^2 \right]$$

cubic symmetry of lattice tensors T⁽ⁿ⁾

$$\begin{split} \sum_{i}^{i} w_{i} &= 1 & \sum_{i}^{i} w_{i} c_{i\alpha} = 0 \\ \sum_{i}^{i} w_{i} c_{i\alpha} c_{i\beta} &= \sigma_{2} \, \delta_{\alpha\beta} & \sum_{i}^{i} w_{i} c_{i\alpha} c_{i\beta} c_{i\gamma} = 0 \\ \sum_{i}^{i} w_{i} c_{i\alpha} c_{i\beta} c_{i\gamma} c_{i\delta} &= \kappa_{4} \, \delta_{\alpha\beta\gamma\delta} + \sigma_{4} \left(\delta_{\alpha\beta} \delta_{\gamma\delta} + \delta_{\alpha\gamma} \delta_{\beta\delta} + \delta_{\alpha\delta} \delta_{\beta\gamma} \right) \end{split}$$

 $\rightarrow\,$ at least three shells required to satisfy the conditions

$$\sum_{i} w_i = 1 \qquad \kappa_4 = 0 \qquad \sigma_4 = \sigma_2^2 \qquad c_s^2 = \sigma_2$$

The lattice Boltzmann equation

recall the linear Boltzmann equation

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{r}}\right) f(\mathbf{r}, \mathbf{v}, t) = \mathscr{L}[f(\mathbf{r}, \mathbf{v}, t) - f^{eq}(\mathbf{v})]$$

 $f(\mathbf{r}, \mathbf{v}, t)$: distribution function $f^{eq}(\mathbf{v})$: Maxwell-Boltzmann distribution \mathscr{L} : linear collision operator

systematic discretization → lattice Boltzmann equation

$$f_i(\mathbf{r} + \tau \mathbf{c}_i, t + \tau) = f_i^*(\mathbf{r}, t) = f_i(\mathbf{r}, t) + \sum_i \mathscr{L}_{ij} \left[f_j(\mathbf{r}, t) - f_j^{eq}(\rho, \mathbf{u}) \right]$$

 $f_i(\mathbf{r}, t)$: population number \mathbf{r} : discrete lattice point $f_i^{eq}(\rho, \mathbf{u})$: equilibrium distribution

- τ: discrete time step c_i: discrete velocity vector
- \mathscr{L}_{ij} : collision matrix

The D3Q19 model

Equilibrium distribution:

$$f_{i}^{eq}(\rho, \mathbf{u}) = w_{i}\rho \left[1 + \frac{\mathbf{u} \cdot \mathbf{c}_{i}}{c_{s}^{2}} + \frac{\mathbf{u}\mathbf{u} : (\mathbf{c}_{i}\mathbf{c}_{i} - c_{s}^{2}1)}{2c_{s}^{4}}\right]$$

Moments:
$$\sum_{i} f_{i}^{eq} = \rho$$
$$\sum_{i} f_{i}^{eq} \mathbf{c}_{i} = \rho \mathbf{u}$$
$$\sum_{i} f_{i}^{eq} \mathbf{c}_{i} \mathbf{c}_{i} = \rho c_{s}^{2}1 + \rho \mathbf{u}\mathbf{u}$$

Weight coefficients:

$$\begin{split} w_i = 1/3 \quad \text{for } |\mathbf{c}_i| = 0, \qquad w_i = 1/18 \quad \text{for } |\mathbf{c}_i| = 1, \qquad w_i = 1/36 \quad \text{for } |\mathbf{c}_i| = \sqrt{2} \end{split}$$
Speed of sound: $c_s = \frac{1}{\sqrt{3}} \left(\frac{a}{\tau}\right)$

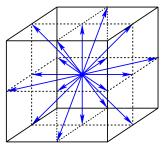
The LB algorithm

streaming step: move $f_i^*(\mathbf{r}, t)$ along \mathbf{c}_i to the next lattice site, increment t by τ

$$f_i(\mathbf{r}+\tau\mathbf{c}_i,t+\tau)=f_i^*(\mathbf{r},t)$$

2 collision step: apply
$$\mathcal{L}_{ij}$$
 and compute the post-collisional $f_i^*(\mathbf{r}, t)$ on every lattice site

$$f_i^*(\mathbf{r},t) = f(\mathbf{r},t) + \sum_j \mathscr{L}_{ij} \left[f_j(\mathbf{r},t) - f_j^{eq}(\rho,\mathbf{u}) \right]$$



D3Q19 lattice

Hydrodynamic moments in lattice Boltzmann

hydrodynamic fields are velocity moments of the populations

$$\rho = \sum_{i} f_{i} \qquad \rho \mathbf{u} = \sum_{i} f_{i} \mathbf{c}_{i} \qquad \Pi = \sum_{i} f_{i} \mathbf{c}_{i} \otimes \mathbf{c}_{i}$$

• construct orthogonal basis e_{ki} for moments (recall $\psi(\mathbf{v})$ and m_{ψ})

$$m_k = \sum_i e_{ki} f_i$$

 $0 \le k \le 9$: hydrodynamic modes (slow), $k \ge 10$: kinetic modes (fast)

collision matrix is diagonal in mode space

$$\mathscr{L}(\mathbf{f} - \mathbf{f}^{eq}) = \mathsf{M}^{-1} \Big(\mathsf{M} \mathscr{L} \mathsf{M}^{-1} \Big) \mathsf{M}(\mathbf{f} - \mathbf{f}^{eq}) = \mathsf{M}^{-1} \hat{\mathscr{L}}(\mathbf{m} - \mathbf{m}^{eq})$$

 \rightarrow MRT model

$$(m_k - m_k^{\mathsf{eq}})^* = \gamma_k (m_k - m_k^{\mathsf{eq}})$$

Choice of the moment basis

$$\begin{split} m_0 &= \rho = \sum_i f_i & \text{mass} \\ m_1 &= j_x = \sum_i f_i c_{ix} & \text{momentum } x \\ m_2 &= j_y = \sum_i f_i c_{iy} & \text{momentum } y \\ m_3 &= j_z = \sum_i f_i c_{iz} & \text{momentum } z \\ m_4 &= \text{tr}(\Pi) & \text{bulk stress} \\ m_5, \dots, m_9 &\simeq \overline{\Pi} & \text{shear stresses} \\ m_{10}, \dots, m_{18} & \text{"kinetic modes", "ghost modes"} \end{split}$$

Multiple relaxation time model (MRT)

$$\gamma_0 = \gamma_1 = \gamma_2 = \gamma_3 = 0$$
 mass and momentum conservation
 $\gamma_4 = \gamma_b$ bulk stress
 $\gamma_5 = \ldots = \gamma_9 = \gamma_s$ shear stress
 $\gamma_{10} = \ldots = \gamma_{18} = 0$ simplest choice, careful with boundaries!

• Remark: we could also relax the populations directly:

$$f_i^{\mathsf{neq}*} = \sum_j \mathscr{L}_{ij} f_j^{\mathsf{neq}}$$

- simplest choice $\mathscr{L}_{ij} = \lambda^{-1} \delta_{ij} \rightarrow$ lattice BGK
- not a particularly good choice (less stable, less accurate)

Viscous stress relaxation

$$\Pi = \overline{\Pi} + \frac{1}{3} tr(\Pi) 1$$

recall: collision step applies linear relaxation to the moments

$$\overline{\Pi}^{*neq} = \gamma_s \overline{\Pi}^{neq}$$

$$tr(\Pi^{*neq}) = \gamma_b tr(\Pi^{neq})$$

Chapman-Enskog expansion leads to

$$-\frac{1}{2}\left(\Pi^{*\mathsf{neq}} + \Pi^{\mathsf{neq}}\right) = \sigma = \eta\left(\nabla \mathbf{u} + (\nabla \mathbf{u})^t\right) + \left(\eta_b - \frac{2}{3}\eta\right)(\nabla \cdot \mathbf{u})\mathbf{1}$$

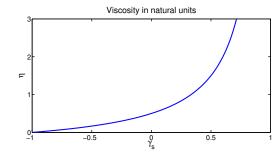
 $\rightarrow\,$ shear and bulk viscosities are determined by the relaxation parameters

$$\eta = \frac{\rho c_s^2 \tau}{2} \frac{1 + \gamma_s}{1 - \gamma_s} \qquad \qquad \eta_b = \frac{\rho c_s^2 \tau}{3} \frac{1 + \gamma_b}{1 - \gamma_b}$$

Chapman-Enskog

Viscosity of the lattice Boltzmann fluid

incompressible Navier-Stokes equation is recovered



• $-1 \leq \gamma_s \leq 1 \Leftrightarrow$ positive viscosities

 \rightarrow any viscosity value is accessible

Units in LB

- grid spacing a, time step τ , particle mass m_p
- these merely control the accuracy and stability of LB!
- physically relevant: mass density ρ , viscosity η , temperature $k_B T$

• recall:

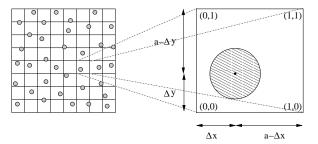
$$c_{s}^{2} = \frac{1}{3} \frac{a^{2}}{\tau^{2}} = \hat{c}_{s}^{2} \frac{a^{2}}{\tau^{2}}$$

$$\eta = \frac{\rho c_{s}^{2} \tau}{2} \frac{1 + \gamma_{s}}{1 - \gamma_{s}} = \hat{\rho} \hat{c}_{s}^{2} \hat{\eta} \frac{m_{p}}{a\tau}$$

$$k_{B} T = m_{p} c_{s}^{2} = m_{p} \hat{c}_{s}^{2} \frac{a^{2}}{\tau^{2}}$$

- → always make sure you are simulating the right *physics*!
- \rightarrow for comparison with experiments: match dimensionless numbers! (*Ma, Re, Pe, Sc, Kn, Pr, Wi, De,* ...)

Coupling of particles and fluid



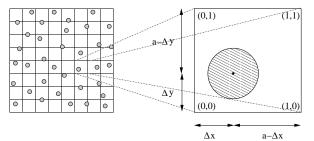
[Ahlrichs and Dünweg, J. Chem. Phys. 111, 8225 (1999)]

Idea: treat monomers as point particles and apply Stokesian drag

 $\mathbf{F} = -\zeta \left[\mathbf{V} - \mathbf{u}(\mathbf{R}, t)
ight] + \mathbf{f}_{stoch}$

- ensure momentum conservation by transferring momentum to the fluid
- dissipative force
 - \rightarrow add stochastic force to fulfill fluctuation-dissipation relation

Coupling of particles and fluid



[Ahlrichs and Dünweg, J. Chem. Phys. 111, 8225 (1999)]

interpolation scheme

$$\mathbf{u}(\mathbf{R},t) = \sum_{\mathbf{x}\in\mathsf{Cell}} \delta_{\mathbf{x}} \mathbf{u}(\mathbf{x},t)$$

momentum transfer

$$-\frac{\Delta t}{a^3}\mathbf{F} = \Delta \mathbf{j} = \frac{\mu}{a^2\tau} \sum_{\mathbf{x} \in \text{Cell}} \sum_i \Delta f_i(\mathbf{x}, t) \mathbf{c}_i$$

"Bare" vs. effective friction constant

- the input friction ζ_{bare} is not the real friction
- $D_0 > k_B T / \zeta_{\text{bare}}$ (due to long time tail)

$$\mathbf{V} = \frac{1}{\zeta_{\text{bare}}} \mathbf{F} + \mathbf{u}_{av} \qquad \mathbf{u} \approx \frac{1}{8\pi\eta r} (1 + \hat{r} \otimes \hat{r}) \mathbf{F} \qquad \mathbf{u}_{av} = \frac{1}{g\eta a} \mathbf{F}$$
$$\frac{1}{\zeta_{\text{eff}}} = \frac{1}{\zeta_{\text{hare}}} + \frac{1}{g\eta a}$$

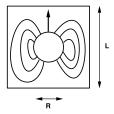
- Stokes contribution from interpolation with range a
- \rightarrow this *regularizes* the theory (no point particles in nature!)
 - ζ_{bare} has no physical meaning!

Finite size effects

Study diffusion / sedimentation of a single object

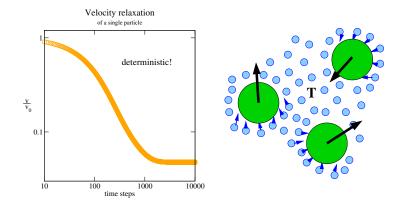
- $L = \infty$: $u(r) \sim 1/r$
- $F \sim \eta R v = \eta R^2 (v/R)$
- area R^2 , shear gradient v/R
- backflow due to momentum conservation
- additional shear gradient v/L
- additional force $\eta R^2(v/L) = \eta Rv(R/L)$
- finite size effect $\sim R/L$

UF FIORIDA



Thermal fluctuations

- so far the LB model is athermal and entirely deterministic
- for Brownian motion, we need fluctuations!



Do we need fluctuations?

If you go to the beach, do you bring a swimsuit?

Ideal gas, temp. T, particle mass m_p, sound speed c_s:

$$k_B T = m_p c_s^2$$

- $c_s \sim a/h$ (a lattice spacing, h time step)
- c_s as small as possible

mass density $\rho=10^3 \, kg/m^3$ sound speed realistic: $1.5 \times 10^3 \, m/s$ sound speed artificial: $c_{\rm g}=10^2 \, m/s$ temperature $T\approx 300 K, \, k_B \, T=4 \times 10^{-21}$ particle mass: $m_p=4 \times 10^{-25} kg$

	macroscopic scale	molecular scale
lattice spacing	a = 1 mm	a = 1nm
time step	$h = 10^{-5} s$	$h = 10^{-11} s$
mass of a site	$m_a = 10^{-6} kg$	$m_a = 10^{-24} kg$
"Boltzmann	$Bo = (m_p/m_a)^{1/2}$	$Bo = (m_p/m_a)^{1/2}$
number"	$= 6 \times 10^{-10}$	= 0.6

Example (water):

Low Mach number physics

- LB requires $u \ll c_i$ hence $u \ll c_s$
- \rightarrow low Mach number $Ma=u/c_s\ll 1$ \rightarrow compressibility does not matter
- \rightarrow equation of state does not matter \rightarrow choose ideal gas! $m_{
 ho}$ particle mass

$$p = \frac{\rho}{m_p} k_B T$$

$$c_s^2 = \frac{\partial \rho}{\partial \rho} = \frac{1}{m_p} k_B T$$

$$p = \rho c_s^2$$

$$k_B T = m_p c_s^2$$

Hydrodynamics with ESPResSo

Generalized lattice gas model (GLG)

consider integer population numbers (mp mass of an LB particle)

$$v_i = \frac{f_i}{\mu}$$
 $\mu = \frac{m_p}{a^3}$ $\mu v_i = w_i \rho$

- each lattice site in contact with a heat bath
- Possion + constraints

$$P(\{\mathbf{v}_i\}) \propto \prod_i \frac{\bar{\mathbf{v}}_i^{\mathbf{v}_i}}{\mathbf{v}_i!} e^{-\bar{\mathbf{v}}_i} \delta\left(\mu \sum_i \mathbf{v}_i - \rho\right) \delta\left(\mu \sum_i \mathbf{v}_i \mathbf{c}_i - \mathbf{j}\right)$$

[B. Dünweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)]

Entropy

associated entropy

$$P \propto \exp[S(\{v_i\})] \delta\left(\mu \sum_i v_i - \rho\right) \delta\left(\mu \sum_i v_i \mathbf{c}_i - \mathbf{j}\right)$$

• Stirling: $v_i! = \exp(v_i \ln v_i - v_i)$

$$S(\{v_i\}) = -\sum_i (v_i \ln v_i - v_i - v_i \ln \bar{v}_i + \bar{v}_i)$$
$$= \frac{1}{\mu} \sum_i \rho w_i \left(\frac{f_i}{\rho w_i} - \frac{f_i}{\rho w_i} \ln \frac{f_i}{\rho w_i} - 1 \right)$$

 \rightarrow μ controls the mean square fluctuations (degree of coarse-graining)

Maximum entropy principle

maximize entropy S subject to constraints for mass and momentum conservation

$$\frac{\partial S}{\partial v_i} + \chi + \lambda \cdot \mathbf{c}_i = 0 \qquad \mu \sum_i v_i - \rho = 0 \qquad \mu \sum_i v_i \mathbf{c}_i - \mathbf{j} = 0$$

formal solution

$$f_i^{\rm eq} = w_i \rho \exp\left(\chi + \lambda \cdot \mathbf{c}_i\right)$$

• expansion up to $\mathcal{O}(u^2)$

$$f_i^{\text{eq}}(\rho, \mathbf{u}) = w_i \rho \left[1 + \frac{\mathbf{u} \cdot \mathbf{c}_i}{c_s^2} + \frac{\mathbf{u} \mathbf{u} \colon (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right]$$

Fluctuations around equilibrium

- Gauss distribution for non-equilibrium part

$$P \propto \exp\left(-\sum_{i} \frac{\left(f_{i}^{\text{neq}}\right)^{2}}{2\mu\rho w_{i}}\right) \delta\left(\sum_{i} f_{i}^{\text{neq}}\right) \delta\left(\sum_{i} \mathbf{c}_{i} f_{i}^{\text{neq}}\right)$$

• transform to the modes $(b_k = \sum_i w_i e_{ki}^2$, Basis $e_{ki})$

$$P\left(\left\{m_k^{\mathsf{neq}}\right\}\right) \propto \exp\left(-\sum_{k \ge 4} \frac{(m_k^{\mathsf{neq}})^2}{2\mu\rho b_k}\right)$$

more convenient: ortho-normal modes

$$\hat{m}_k = \sum_i \hat{e}_{ki} \frac{f_i}{\sqrt{w_i \mu \rho}}$$

Implementation of the fluctuations

introduce stochastic term into the collision step

$$m_k^{*\mathrm{neq}} = \gamma_k m_k^{\mathrm{neq}} + \varphi_k r_k$$

 r_k random number from normal distribution

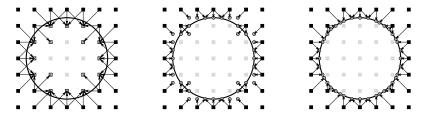
ensure detailed balance (like in Monte-Carlo)

$$\frac{p(m \to m^*)}{p(m^* \to m)} = \frac{\exp(-m^{*2}/2)}{\exp(-m^2/2)} \qquad \Rightarrow \qquad \varphi_k = \sqrt{\mu \rho \, b_k \left(1 - \gamma_k^2\right)}$$

- $\varphi_k \neq 0$ for all non-conserved modes
- \rightarrow all modes have to be thermalized

```
[A. J. C. Ladd, JFM 271, 285–309 (1994)]
[Adhikari et al., EPL 71, 473-479 (2005)]
[B. Dünweg, UDS, A. J. C. Ladd, PRE 76, 036704 (2007)]
```


Lattice representation of rigid objects

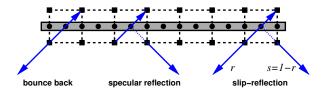


- determine the points where the surface of the rigid object intersects the lattice links
- \rightarrow surface markers

"Accounting for these constraints may be trivial under idealized conditions [...] but generally speaking, it constitutes a very delicate (and sometimes nerveprobing!) task."

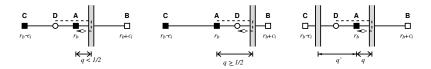
SAURO SUCCI

Boundary conditions



- these rules are simple to implement
- but they are only correct to first order
- the boundary location is always midway in between nodes

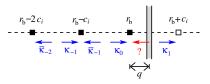
Interpolation boundary conditions



$$\begin{split} f_{i^{-}}(\mathbf{r}_{B},t+\tau) &= 2qf_{i}^{*}(\mathbf{r}_{B},t) + (1-2q)f_{i}^{*}(\mathbf{r}_{B}-\tau\mathbf{c}_{i},t), \qquad q < \frac{1}{2}, \\ f_{i^{-}}(\mathbf{r}_{B},t+\tau) &= \frac{1}{2q}f_{i}^{*}(\mathbf{r}_{B},t) + \frac{2q-1}{2q}f_{i^{-}}^{*}(\mathbf{r}_{B},t), \qquad q \geq \frac{1}{2}. \end{split}$$

[Bouzidi et al., Phys. Fluids 13, 3452 (2001)]

Multi-reflection boundary conditions



$$f_{i^{-}}(\mathbf{r}_{B},t+\tau) = f_{i}^{*}(\mathbf{r}_{B},t) - \frac{1-2q-2q^{2}}{(1+q)^{2}}f_{i^{-}}^{*}(\mathbf{r}_{B},t) + \frac{1-2q-2q^{2}}{(1+q)^{2}}f_{i}^{*}(\mathbf{r}-\tau\mathbf{c}_{i},t) \\ - \frac{q^{2}}{(1+q)^{2}}f_{i^{-}}^{*}(\mathbf{r}-\tau\mathbf{c}_{i},t) + \frac{q^{2}}{(1+q)^{2}}f_{i}^{*}(\mathbf{r}-2\tau\mathbf{c}_{i},t).$$

• match Taylor expansion at the boundary with Chapman-Enskog result \rightarrow yields a condition for the relaxation rate of the kinetic modes

$$\lambda_g(\lambda_s) = -8\frac{2+\lambda}{8+\lambda}$$

[Ginzburg and d'Humières, Phys. Rev. E 68, 066614 (2003).]

-1

Equilibrium interpolation

$$\begin{aligned} f_{i^{-}}^{\text{eq}}(\mathbf{r}_{B}, t+\tau) &= 2qf_{i}^{\text{eq}}(\mathbf{r}_{B}, t) + (1-2q)f_{i}^{\text{eq}}(\mathbf{r}_{B}-\tau\mathbf{c}_{i}, t) & q < \frac{1}{2} \\ f_{i^{-}}^{\text{eq}}(\mathbf{r}_{B}, t+\tau) &= \frac{1-q}{q}f_{i}^{\text{eq}}(\mathbf{r}, t) + \frac{2q-1}{q}f_{i}^{\text{eq}}(\mathbf{r}_{B}+q\tau\mathbf{c}_{i}) & q \geq \frac{1}{2} \\ f_{i^{-}}^{\text{neq}}(\mathbf{r}_{B}, t+\tau) &= f_{i}^{\text{neq}}(\mathbf{r}_{B}, t) \end{aligned}$$

[Chun and Ladd, Phys. Rev. E 75, 066705 (2007)]

- interpolation for equilibrium
- bounce-back for non-equilibrium
- non-equilibrium enters Chapman-Enskog one order later than equilibrium
- $\rightarrow\,$ still second order accurate!

Lattice Boltzmann in ESPResSo

setmd box_l \$Lx \$Ly \$Lz setmd periodic ...

cellsystem domain_decomposition -no_verlet_list

lbfluid density \$lb_dens grid \$lb_grid tau \$lb_tau lbfluid viscosity \$lb_visc lbfluid friction \$lb_zeta thermostat lb \$temp

lb_boundary wall \$px \$py \$pz normal \$nx \$ny \$nz

integrate \$nsteps

puts [analyze fluid mass] puts [analyze fluid momentum]

Summary of lattice Boltzmann

- lattice kinetic approach to hydrodynamics
- easy to implement and to parallelize
- solid theoretical underpinning
- consistent thermal fluctuations
- beyond Navier-Stokes: possible but can get complicated
- challenges: non-ideal fluids, multi-phase fluids, thermal flows

Want more?

Dünweg and Ladd: "Lattice Boltzmann simulations of soft matter systems" *Adv. Polymer Sci.* **221**, 89–166 (2009)

Aidun and Clausen: "Lattice-Boltzmann Method for Complex Flows" Annu. Rev. Fluid Mech. 42, 439–472 (2010)

Acknowledgments

Friederike Schmid Burkhard Dünweg Tony Ladd Gerhard Gompper

Thank you for your attention!

Hydrodynamics with ESPResSo

Eliminating fast variables: Chapman-Enskog

introduce length and time scales

coarse-grained length: $\mathbf{r}_1 = \varepsilon \mathbf{r} \rightarrow \frac{\partial}{\partial \mathbf{r}} = \varepsilon \frac{\partial}{\partial \mathbf{r}_1}$ convective time scale: $t_1 = \varepsilon t$ diffusive time scale: $t_2 = \varepsilon^2 t \rightarrow \frac{\partial}{\partial t} = \varepsilon \frac{\partial}{\partial t_1} + \varepsilon^2 \frac{\partial}{\partial t_2}$

use ɛ as a perturbation parameter and expand f

$$f = f^{(0)} + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

$$\mathscr{C}[f] = \mathscr{C}[f^{(0)}] + \varepsilon \int d\mathbf{r} d\mathbf{v} \frac{\delta C[f]}{\delta f} f^{(1)}(\mathbf{r}, \mathbf{v}) + \dots$$

ightarrow solve for each order in arepsilon

Chapman-Enskog expansion

- ε^0 : yields the collisional invariants, and the equilibrium distribution $f^{(0)} = f^{\rm eq}$
- ε^1 : yields the Euler equations, and the first order correction $f^{(1)}$

$$\left(\frac{\partial}{\partial t_1} + \mathbf{v}\frac{\partial}{\partial \mathbf{r}_1}\right) f^{(0)} = \int d\mathbf{r}' d\mathbf{v}' \frac{\delta C[f^{(0)}]}{\delta f^{(0)}} f^{(1)}(\mathbf{r}', \mathbf{v}') \tag{*}$$

- ε^2 : adds viscous terms to the Euler equation
- \rightarrow Navier-Stokes!
- the "only" difficulty is: no explicit solution of (*) is known... (except for Maxwell molecules)

Chapman-Enskog expansion for LB

original LBE

$$f_i(\mathbf{r} + \tau \mathbf{c}_i, t + \tau) - f_i(\mathbf{r}, t) = \Delta_i$$

recall: coarse-grained length r₁, convective time scale t₁, diffusive time scale t₂

$$f_i(\mathbf{r}_1 + \varepsilon \tau \mathbf{c}_i, t_1 + \varepsilon \tau, t_2 + \varepsilon^2 \tau) - f_i(\mathbf{r}_1, t_1, t_2) = \Delta_i$$

Taylor expansion:

$$\varepsilon \tau \left(\frac{\partial}{\partial t_1} + \mathbf{c}_i \cdot \frac{\partial}{\partial \mathbf{r}_1} \right) f_i + \varepsilon^2 \tau \left[\frac{\partial}{\partial t_2} + \frac{\tau}{2} \left(\frac{\partial}{\partial t_1} + \mathbf{c}_i \cdot \frac{\partial}{\partial \mathbf{r}_1} \right) \right] f_i = \Delta_i$$

Chapman-Enskog expansion for LB

• expand f_i and Δ_i in powers of ε

$$f_i = f_i^{(0)} + \varepsilon f_i^{(1)} + \varepsilon^2 f_i^{(2)} + \dots$$
$$\Delta_i = \Delta_i^{(0)} + \varepsilon \Delta_i^{(1)} + \dots$$

- hierarchy of equations at different powers of arepsilon

$$\begin{aligned} \mathscr{O}(\varepsilon^{0}) &: \quad \Delta_{i}^{(0)} = 0 \\ \mathscr{O}(\varepsilon^{1}) &: \quad \left(\frac{\partial}{\partial t_{1}} + \mathbf{c}_{i} \cdot \frac{\partial}{\partial \mathbf{r}_{1}}\right) f_{i}^{(0)} = \frac{1}{\tau} \Delta_{i}^{(1)} \\ \mathscr{O}(\varepsilon^{2}) &: \quad \left[\frac{\partial}{\partial t_{2}} + \frac{\tau}{2} \left(\frac{\partial}{\partial t_{1}} + \mathbf{c}_{i} \cdot \frac{\partial}{\partial \mathbf{r}_{1}}\right)^{2}\right] f_{i}^{(0)} + \left(\frac{\partial}{\partial t_{1}} + \mathbf{c}_{i} \cdot \frac{\partial}{\partial \mathbf{r}_{1}}\right) f_{i}^{(1)} = \frac{1}{\tau} \Delta_{i}^{(2)} \end{aligned}$$

Zeroth order ε^0

no expansion for conserved quantities!

$$f_i^{(0)} = f_i^{\text{eq}}$$

$$\rho^{(0)} = \rho = \sum_i f_i^{\text{eq}}$$

$$\mathbf{j}^{(0)} = \mathbf{j} = \sum_i f_i^{\text{eq}} \mathbf{c}_i$$

linear part of collision operator

$$\Delta_i = \epsilon \Delta_i^{(1)} = \epsilon \sum_j \frac{\partial \Delta_i}{\partial f_j} \Big|_{f^{(0)}} f_j^{(1)} = \sum_j \mathscr{L}_{ij} f_j^{(1)}$$

Equations for the mass density

$$\frac{\partial}{\partial t_1} \rho + \frac{\partial}{\partial \mathbf{r}_1} \cdot \mathbf{j} = \mathbf{0}$$
$$\frac{\partial}{\partial t_2} \rho = \mathbf{0}$$

 $\rightarrow\,$ continuity equation holds!

Equations for the momentum density

$$\frac{\partial}{\partial t_1} \mathbf{j} + \frac{\partial}{\partial \mathbf{r}_1} \cdot \mathbf{\Pi}^{(0)} = 0$$
$$\frac{\partial}{\partial t_2} \mathbf{j} + \frac{1}{2} \frac{\partial}{\partial \mathbf{r}_1} \cdot \left(\mathbf{\Pi}^{*(1)} + \mathbf{\Pi}^{(1)} \right) = 0$$

Euler stress

$$\Pi^{(0)} = \rho c_s^2 \mathbf{1} + \rho \mathbf{u} \mathbf{u} = \Pi^{\mathsf{eq}}$$

Newtonian viscous stress

$$\tfrac{\varepsilon}{2}\left(\Pi^{*(1)}+\Pi^{(1)}\right)=-\Pi^{\mathsf{visc}}$$

 $\rightarrow\,$ incompressible Navier-Stokes equation holds!

Diggin' deeper...

• the third moment $\Phi^{(0)} = \sum_i f_i^{(0)} \mathbf{c}_i \mathbf{c}_i \mathbf{c}_i$ enters through its equilibrium part!

$$\frac{\partial}{\partial t_1} \Pi^{(0)} + \frac{\partial}{\partial \mathbf{r}_1} \cdot \boldsymbol{\Phi}^{(0)} = \frac{1}{\tau} \sum_i \Delta_i^{(1)} \mathbf{c}_i \mathbf{c}_i = \frac{1}{\tau} \left(\Pi^{*(1)} - \Pi^{(1)} \right)$$

explicit form

$$\Phi^{(0)}_{\alpha\beta\gamma} = \rho c_s^2 \left(u_\alpha \delta_{\beta\gamma} + u_\beta \delta_{\alpha\gamma} + u_\gamma \delta_{\alpha\beta} \right)$$

from continuity and Euler equation

$$\frac{\partial}{\partial t_1} \Pi^{(0)} = \frac{\partial}{\partial t_1} \left(\rho c_s^2 1 + \rho \mathbf{u} \mathbf{u} \right) = \dots$$

• neglecting terms of $\mathcal{O}(u^3)$

$$\Pi^{*(1)} - \Pi^{(1)} = \rho c_s^2 \tau \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^t \right)$$

Suitable LB models

equilibrium values of the moments up to Φ^{eq}

$$\begin{array}{llll} \rho^{\rm eq} & = & \rho \\ \mathbf{j}^{\rm eq} & = & \mathbf{j} \\ \Pi^{\rm eq} & = & \rho c_s^2 \mathbf{1} + \rho \mathbf{u} \mathbf{u} \\ \Phi^{\rm eq}_{\alpha\beta\gamma} & = & \rho c_s^2 \left(u_\alpha \delta_{\beta\gamma} + u_\beta \delta_{\alpha\gamma} + u_\gamma \delta_{\alpha\beta} \right) \end{array}$$

collision operator

$$\sum_{i} \Delta_{i} = 0 \qquad \qquad \sum_{i} \Delta_{i} \mathbf{c}_{i} = 0$$
$$\overline{\Pi}^{*neq} = \gamma_{s} \overline{\Pi}^{neq} \qquad \qquad \mathsf{tr}(\Pi^{*neq}) = \gamma_{b} \mathsf{tr}(\Pi^{neq})$$

Why all parts need to be thermalized?

- Equations of motion are stochastic differential equations
- Fokker-Planck formalism
- \rightarrow Kramers-Moyal expansion

Particle, conservative : $\mathscr{L}_{1} = -\sum_{i} \left(\frac{\partial}{\partial \mathbf{r}_{i}} \cdot \frac{\mathbf{p}_{i}}{m_{i}} + \frac{\partial}{\partial \mathbf{p}_{i}} \cdot \mathbf{F}_{i} \right)$ Particle, Langevin : $\mathscr{L}_{2} = \sum_{i} \frac{\Gamma_{i}}{m_{i}} \frac{\partial}{\partial \mathbf{p}_{i}} \mathbf{p}_{i}$ Particle, stochastic : $\mathscr{L}_{3} = k_{B} T \sum_{i} \Gamma_{i} \frac{\partial^{2}}{\partial \mathbf{p}_{i}^{2}}$

Fluctuation-Dissipation relation

$$\left(\sum_{i}\mathscr{L}_{i}\right)\exp(-\beta\mathscr{H})=0$$

Why all parts need to be thermalized?

Particle, conservative :
$$\mathscr{L}_{1} = -\sum_{i} \left(\frac{\partial}{\partial \mathbf{r}_{i}} \cdot \frac{\mathbf{p}_{i}}{m_{i}} + \frac{\partial}{\partial \mathbf{p}_{i}} \cdot \mathbf{F}_{i} \right)$$

Fluid, conservative: $\mathscr{L}_{4} = \int d\mathbf{r} \left(\frac{\delta}{\delta \rho} \partial_{\alpha} j_{\alpha} + \frac{\delta}{\delta j_{\alpha}} \partial_{\beta} \Pi_{\alpha\beta}^{eq} \right)$
Fluid, viscous: $\mathscr{L}_{5} = \eta_{\alpha\beta\gamma\delta} \int d\mathbf{r} \frac{\delta}{\delta j_{\alpha}} \partial_{\beta} \partial_{\gamma} u_{\delta}$
Fluid, stochastic: $\mathscr{L}_{6} = k_{B} T \eta_{\alpha\beta\gamma\delta} \int d\mathbf{r} \frac{\delta}{\delta j_{i\alpha}} \partial_{\beta} \partial_{\gamma} \frac{\delta}{\delta j_{\delta}}$
Particle, coupling: $\mathscr{L}_{7} = -\sum_{i} \zeta_{i} \frac{\partial}{\partial \rho_{i\alpha}} u_{i\alpha}$
Fluid, coupling: $\mathscr{L}_{8} = -\sum_{i} \zeta_{i} \int d\mathbf{r} \Delta(\mathbf{r}, \mathbf{r}_{i}) \frac{\delta}{\delta j_{\alpha}(\mathbf{r})} \left(\frac{\rho_{i\alpha}}{m_{i}} - u_{i\alpha} \right)$
Fluid, stochastic: $\mathscr{L}_{9} = k_{B} T \sum_{i} \zeta_{i} \int d\mathbf{r} \Delta(\mathbf{r}, \mathbf{r}_{i}) \frac{\delta}{\delta j_{\alpha}(\mathbf{r})} \int d\mathbf{r}' \Delta(\mathbf{r}', \mathbf{r}_{i}) \frac{\delta}{\delta j_{\alpha}(\mathbf{r}')}$
Particle, stochastic: $\mathscr{L}_{10} = -2k_{B} T \sum_{i} \zeta_{i} \frac{\partial}{\partial \rho_{i\alpha}} \int d\mathbf{r} \Delta(\mathbf{r}, \mathbf{r}_{i}) \frac{\delta}{\delta j_{\alpha}(\mathbf{r})}$