Systematic Coarse-Graining using VOTCA

Victor Rühle, Christoph Junghans Stuttgart, 10.10.2012

VOTCA Contributors

Project supervisors

Kurt Kremer Denis Andrienko

Core Developers

Christoph Junghans Victor Rühle

Implementations

Tristan Bereau Sebastian Fritsch Mara Jochum Konstantin Koschke Alexander Lukyanov Sikandar Mashayak

Interface to ESPResSo Interface to AdResS Simplex algorithm Parallel analysis engine Force-matching Relative entropy method Coarse-graining is an essential part of multiscale simulations:

Benefits:

- Less interactions to evaluate
- Less degrees of freedom to integrate
- Intrinsic speedup of dynamics

Enhances accessible range of time- and lengthscales

Motivation

Polymer models

Example: Gaussian chain

• Represent polymer by beads which are connected by strings

- Works well to obtain scaling laws if $r \gg l_p$ (end-end distance, ...)
- Various modifications / extensions (e.g. add stiffness)
- Often analytical solution available

Problem: No connection to underlying chemistry

Systematic coarse-graining

Is there a coarse-grained model which reproduces selected properties of a given (atomistic) reference system?

- Mapping from atomistic to coarse-grained system
- Structure based mapping allows to reintroduce atomistic details (back-mapping)

Mapping operator

$$\mathbf{r}^{n} = \{\mathbf{r}_{1}, \dots, \mathbf{r}_{n}\} \longrightarrow \mathbf{R}^{N} = \{\mathbf{R}_{1}, \dots, \mathbf{R}_{N}\}$$
$$R_{I} = M_{I}R_{I} = \sum_{i} c_{Ii}r_{i}$$

Equilibrium probability density $p_R(\mathbf{R}^N) = \int d\mathbf{r}^n p_r(\mathbf{r}^n) \delta(M_R(\mathbf{r}^n) - \mathbf{R}^N)$ for mapped CG variables

Consistency of the coarse-grained and the atomistic models

$$p_R(R^N) = P_R(R^N)$$

Problem: Full multibody distribution function

Bonded interactions: Boltzmann inversion

 Assume that probability distributions for bond, angle, torsion factorize

 $P(r,\varphi,\theta) = P(r)P(\varphi)P(\theta)$

Invert Boltzmann distribution to obtain potential

$$P(r) = \exp\left(-\frac{U(r)}{k_BT}\right), \qquad U(r) = -k_BT\ln P(r)$$

Important: use scaled distributions!

$$P(r) = \frac{P'(r)}{r^2}, \qquad P(\varphi) = \frac{P'(\varphi)}{\sin(\varphi)}$$

VOTCA: csg_boltzmann

E. Tschöp et al, Acta Polymer. 49, 61 – 74 (1998)

Henderson theorem

 Formulate coarse-graining based on correlation functions

 $\begin{array}{ll} \rho_1(r_1) & \text{density} \\ \rho_2(r_1,r_2) & \text{radial distribution function (RDF)} \\ \rho_3(r_1,r_2,r_3) & 3-\text{body correlations} \\ \end{array}$

- Fruncate after ρ_1 , ρ_2 (easy to compute)
- Henderson theorem:

For every $\rho_2(r)$ exists a unique (coarse-grained) pairwise potential U(r)

All structure based iterative method (ρ_1 , ρ_2 -based) must converge to the same coarse-grained potential

R. Henderson, Phys. Lett. A, A49, 197-198 (1974)

Iterative Boltzmann Inversion (IBI)

 Iteratively fit radial distribution function using tabulated potentials

$$U_0(r) = -k_B T \ln g^{Ref}(r)$$

$$\Delta U_n(r) = k_B T \ln \frac{g_n(r)}{g^{Ref}(r)}$$

Features:

- Easy to implement
- no correlations (local update)
- robust

VOTCA: csg_inverse

D. Reith et al., J. Comp. Chem. 24 (13), 1624 (2003) A. Lyubartsev et al., Phys. Rev. E 52 (4), 3730 (1995)

Inverse Monte Carlo update

Idea: Tabulate the interaction potential and rewrite all interactions using the number of particles in a shell α

$$H = \sum_{i,j} U(r_{ij}) = \sum_{\alpha} S_{\alpha} U_{\alpha}$$

Expand the expectation value of the number of particles in a shell to the change of the potential

$$< S_{\alpha} > -S_{\alpha}^{ref} = \sum_{\gamma} \frac{\partial < S_{\alpha} >}{\partial U_{\gamma}} \Delta U_{\gamma} + \mathcal{O}(\Delta U^{2})$$
$$\frac{\partial < S_{\alpha} >}{\partial U_{\gamma}} = \frac{\partial}{\partial U_{\gamma}} \frac{\int dq \, S_{\alpha}(q) \exp[-\beta H(q)]}{\int dq \, \exp[-\beta H(q)]}$$

$$\Delta \langle S_{\alpha} \rangle = \sum_{\gamma} \frac{\langle S_{\alpha} \rangle \langle S_{\gamma} \rangle - \langle S_{\alpha} S_{\gamma} \rangle}{k_B T} \Delta U_{\gamma}$$

non-local, correlations included

A. Lyubartsev et al., Phys. Rev. E 52 (4), 3730 (1995)

Efficiency of the iterative methods

- IMC converges faster but needs longer iterations
- In this example: less computational costs for IBI
- What if correlations are present?

Potential of Mean Force (PMF)

Starting from consistency relation of the coarse-grained and the atomistic models $p_R(R^N) = P_R(R^N)$

$$exp[-\beta U(R^{N})] \sim \int dr^{n} \exp[-\beta u(r^{n})] \delta(M_{RI}(r^{n}) - R^{N})$$

or
$$F_{I}(R^{N}) = \langle \mathcal{F}_{I}(r^{n}) \rangle_{R^{N}}$$

- The many-body potential of mean force (PMF) is a conditioned free energy surface in the coordinate space of the CG variables
- The CG force-field is F_I a conditioned expectation value of \mathcal{F}_I for an atomistic system

PMF provides exact mapping of the atomistic onto CG system

Problem: PMF requires many-body potential functions, while MD force-fields provide a limited set basis set (pair-wise potentials, bonds, angles, dihedrals)

Force matching (Multiscale coarse-graining)

 Solution: Use variational principle to project the many-body potentials on the functions provided by the force-field

$$x^{2} = \left| \sum_{I} \left| F_{i}^{CG} - \sum_{i \in \mathbb{1}} c_{i} f_{i}^{Ref} \right|^{2} \right|$$

- Splines or step functions \rightarrow linear least squares fit
- Not iterative → need to add additional terms to the coarse-grained force-field to improve results
- Requires reference forces

VOTCA: csg_fmatch

S. Izvekov and G. Voth, J. Chem. Phys. 123, 134105 (2005). W. Noid et al., J. Chem. Phys. 120, 244114 (2008)

VOTCA

- Consistent implementation of methods
 → allow for direct comparison
- Framework for the implementation of new methods

Examples

Water

<cg_molecule> <name>SOL</name> <ident>SOL</ident> <topology> <cg_beads> <cg_bead> <name>CG</name> <type>CG</type> <mapping>A</mapping> <beads> 1:SOL:OW 1:SOL:HW1 1:SOL:HW2 </beads> </cg_bead> </cg_beads> </topology> <maps> <map> <name>A</name> <weights>16 1 1</weights> </map></maps></cg_molecule>

1 cg bead centre of mass mapping spherical potential

SPC/E water

- IBI and IMC reproduce RDF and give similar potentials
- Force matching does not reproduce RDF
 - \rightarrow lack of 3-body term (tetrahedral packing)

SPC/E water: extension of the basis set

Adding a three-body potential fixes the small basis set problem

Luca Larini, Lanyuan Lu, and Gregory A. Voth, J. Chem. Phys. 132, 164107 (2010)

Force-matching & bonded interactions

Hexane: angle distribution not reproduced

Correlations

- Bond-angle correlations not reproduced
 - affects chain stiffness, end-end distance
 - Problems when backmapping to atomistic details
 - Add further terms to CG force field or adjust mapping

Hybrid approaches

Mix force-matching + Boltzmann inversion

- apply force matching to derive only those potentials which can be well projected on the basis functions of the CG force-field (typically non-bonded potentials)
- exclude all forces except those of interest

Advantages

 can be used for heterogeneous systems where RDF is not well defined

Example: liquid hexane

V. Rühle et. al, Macromol. Theory Simul. 20, 472-477 (2011)

Avoiding correlations

- Adjusting the mapping can avoid correlations.
 - Polythiophene with centre of mass mapping shows correlations due to backbone torsion
 - Use centre of ring mapping avoids correlations since coarse-grained bond corresponds to C-C bond

Successful models (incomplete list)

- Kremer group
 - Polycarbonate
 - Polystyrene
 - Different tacticity, diffusion scaling
 - Fritz et al, Macromolecules 42 (19), 7579-7588 (2009)

- Voth group, bio systems:
 - Multiscale Coarse-Graining of the Protein Energy Landscape Hills et al, PLoS Comput Biol. 6(6), e1000827 (2010)

Summary

- Coarse-graining provides a systematic way to parameterize a force-field based on selected properties of a reference system. Can be based on
 - Pair distribution functions
 - Boltzmann inversion
 - Iterative Boltzmann Inversion
 - Inverse Monte Carlo
 - Many-body potential of mean force
 - force matching
 - Desired thermodynamic property
 - Simplex algorithm

Be careful

- CG models never reproduce all properties
- CG force-fields parameterized at a specific state point
- RDF reproduced, but no predictions for other (thermodynamic) properties and higher order correlations (e.g. pressure, tetrahedral packing)

Thank you for your attention!

www.votca.org