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Konstantin Koschke Parallel analysis engine 

Alexander Lukyanov Force-matching 

Sikandar Mashayak  Relative entropy method 

 

 



Coarse-graining is an essential 
part of multiscale simulations: 
 
Benefits: 
 

 Less interactions to evaluate 
 Less degrees of freedom 

to integrate 
 Intrinsic speedup of dynamics 

Enhances accessible range of time- and lengthscales 
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Example: Gaussian chain 
◦ Represent polymer by beads which are connected by strings 

 

 
 

 

 

 

◦ Works well to obtain scaling laws if 𝑟 ≫ 𝑙𝑝 
 (end-end distance, …) 

◦ Various modifications / extensions (e.g. add stiffness) 

◦ Often analytical solution available 
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Problem: No connection to underlying chemistry 



Is there a coarse-grained model which reproduces selected 
properties of a given (atomistic) reference system? 

 Mapping from atomistic to coarse-grained system  

 Structure based mapping allows to reintroduce 
atomistic details (back-mapping) 

 



𝑹𝑁 = 𝑹1, … , 𝑹𝑁  𝒓𝑛 = {𝒓1, … , 𝒓𝑛} 

𝑅𝐼 = 𝑀𝐼𝑅𝐼 = 𝑐𝐼𝑖𝑟𝑖
𝑖

 

Equilibrium probability density 
for mapped CG variables 

𝑝𝑅 𝑹
𝑁 =  𝑑𝒓𝑛 𝑝𝑟 𝒓

𝑛 𝛿 𝑀𝑹 𝒓
𝑛 − 𝑹𝑁  

 

Consistency of the coarse-grained 
and the atomistic models 

𝒑𝑹 𝑹
𝑵 = 𝑷𝑹 𝑹

𝑵  

Problem: Full multibody distribution function 



 Assume that probability distributions for bond, 
angle, torsion factorize 

𝑃 𝑟, 𝜑, 𝜃 = 𝑃 𝑟)𝑃 𝜑 𝑃(𝜃  

 Invert Boltzmann distribution to obtain potential 

𝑃 𝑟 = exp −
𝑈 𝑟

𝑘𝐵𝑇
, 𝑈 𝑟 = −𝑘𝐵𝑇 ln𝑃(𝑟) 

 Important: use scaled distributions! 

𝑃 𝑟 =
𝑃′ 𝑟

𝑟2
, 𝑃 𝜑 =

𝑃′ 𝜑

sin(𝜑)
 

 

 

E. Tschöp et al, Acta Polymer. 49, 61 – 74 (1998) 

VOTCA: 
csg_boltzmann 



 Formulate coarse-graining based on correlation 
functions 

 

 

 

 Truncate after 𝜌1, 𝜌2 (easy to compute) 

 Henderson theorem:  
For every 𝜌2(𝑟) exists a unique (coarse-grained) 
pairwise potential U(𝑟)  

𝜌1(𝒓1)   density 
𝜌2(𝒓1, 𝒓2)  radial distribution function (RDF) 
𝜌3(𝒓1, 𝒓2, 𝒓3)  3-body correlations 
…   … 

All structure based iterative method (𝜌1, 𝜌2-based) must 
converge to the same coarse-grained potential 

R. Henderson, Phys. Lett. A, A49, 197-198 (1974) 



 Iteratively fit radial distribution 
function using tabulated potentials 

 

 

 

 

 

 Features: 
◦ Easy to implement 

◦ no correlations (local update) 

◦ robust  

 

Initial guess 

Simulation 

Analysis 

Potential update 

converged? 

yes 

no 

D. Reith et al., J. Comp. Chem. 24 (13), 1624 (2003) 

A. Lyubartsev et al., Phys. Rev. E 52 (4), 3730 (1995) 

Δ𝑈𝑛 𝑟 = 𝑘𝐵𝑇 ln
𝑔𝑛 𝑟

𝑔𝑅𝑒𝑓 𝑟
 

VOTCA: 
csg_inverse 

𝑈0 𝑟 = −𝑘𝐵𝑇 ln 𝑔
𝑅𝑒𝑓 𝑟  



 
Idea: Tabulate the interaction potential and 
rewrite all interactions using the number of 
particles in a shell 𝛼 

r
α 

α-shell 

𝐻 = 𝑈 𝑟𝑖𝑗
𝑖,𝑗

= 𝑆𝛼𝑈𝛼
𝛼

 

Expand the expectation value 
of the number of particles in 
a shell to the change of the 
potential  

Δ 𝑆𝛼 = 
𝑆𝛼 𝑆𝛾 − 𝑆𝛼𝑆𝛾
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𝜕 < 𝑆𝛼 >

𝜕𝑈𝛾
=
𝜕

𝜕𝑈𝛾

 𝑑𝑞𝑆𝛼 𝑞 exp −𝛽𝐻 𝑞

 𝑑𝑞 exp −𝛽𝐻 𝑞
 

A. Lyubartsev et al., Phys. Rev. E 52 (4), 3730 (1995)  

non-local, 

correlations included 



 IMC converges faster but needs longer iterations 

 In this example: less computational costs for IBI 

 What if correlations are present? 

convergence error of the update 



𝒑𝑹 𝑹
𝑵 = 𝑷𝑹 𝑹

𝑵  
Starting from consistency relation of the 
coarse-grained and the atomistic models 

W. Noid et al., J. Chem. Phys. 120, 244114 (2008) 

𝑒𝑥𝑝[−𝛽𝑈(𝑅𝑁)]~ 𝑑𝑟𝑛 exp[−𝛽𝑢(𝑟𝑛)] 𝛿(𝑀𝑅𝐼(𝑟
𝑛) − 𝑅𝑁) 

or 

𝐹𝐼(𝑅
𝑁) =< ℱ𝐼(𝑟

𝑛) >𝑅𝑁 

- The many-body potential of mean force (PMF) is a conditioned free 
energy surface in the coordinate space of the CG variables 

- The CG force-field is 𝐹𝐼 a conditioned expectation value of  ℱ𝐼 for 
an atomistic system 
 

PMF provides exact mapping of the atomistic onto CG system  
 
Problem: PMF requires many-body potential functions, while MD 
force-fields provide a limited set basis set (pair-wise potentials, 
bonds, angles, dihedrals)  



 Solution: Use variational principle to project the 
many-body potentials on the functions provided by 
the force-field  

 

 

 

 Splines or step functions → linear least squares fit 

 Not iterative → need to add additional terms to the  
coarse-grained force-field to improve results 

 Requires reference forces 

S. Izvekov and G. Voth, J. Chem. Phys. 123, 134105 (2005). 

W. Noid et al., J. Chem. Phys. 120, 244114 (2008) 
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VOTCA: 
csg_fmatch 



V. Rühle et al, J. Chem. Theo. Comp. 5 (12), 3211 (2009) 

Sampling 
engine 

Analysis engine 

Generic tools 

Scripting 
framework 

Boltzmann 
inversion 

Force matching 

mapping 

Inverse Monte 
Carlo 

Iterative 
Boltzmann 
Inversion 

Gromacs 

ESPResSo 

LAMMPS 

External Library Applications 

 Consistent implementation of methods  
    → allow for direct comparison 

 Framework for the implementation of new methods 

 



Examples 



<cg_molecule> 
  <name>SOL</name> 
  <ident>SOL</ident>  
  <topology> 
    <cg_beads> 
      <cg_bead> 
        <name>CG</name> 
        <type>CG</type> 
        <mapping>A</mapping> 
        <beads> 
          1:SOL:OW 1:SOL:HW1 1:SOL:HW2  
        </beads> 
      </cg_bead> 
    </cg_beads> 
  </topology> 
  <maps> 
    <map> 
      <name>A</name> 
      <weights>16 1 1</weights> 
    </map> 
  </maps> 
</cg_molecule> 

1 cg bead 
centre of mass mapping 
spherical potential 



 IBI and IMC reproduce RDF and give similar 
potentials 

 Force matching does not reproduce RDF  
→ lack of 3-body term (tetrahedral packing) 

radial distribution function water-water potential 



Adding a three-body potential fixes the small basis set problem  

Luca Larini, Lanyuan Lu, and Gregory A. Voth, J. Chem. Phys. 132, 164107 (2010)  



 Hexane: angle distribution not 
reproduced 

 



 Bond-angle correlations not reproduced 
◦ affects chain stiffness, end-end distance 

◦ Problems when backmapping to atomistic details 

◦ Add further terms to CG force field or adjust mapping 

atomistic coarse-grained 



 Mix force-matching + Boltzmann inversion 
◦ apply force matching to derive only those potentials which 

can be well projected on the basis functions of the CG 
force-field (typically non-bonded potentials)  

◦ exclude all forces except those of interest 

 Advantages 
◦ can be used for heterogeneous systems where RDF is not 

well defined  

V.  Rühle et. al, Macromol. Theory Simul. 20, 472–477 (2011)  

Example: liquid hexane 



 Adjusting the mapping can avoid correlations. 
◦ Polythiophene with centre of mass mapping shows 

correlations due to backbone torsion 

◦ Use centre of ring mapping avoids correlations since 
coarse-grained bond corresponds to C-C bond 

 

changing backbone bend 
 
constant backbone bend 



 Kremer group 
◦ Polycarbonate 
◦ Polystyrene 

 Different tacticity, diffusion scaling 
 Fritz et al,  Macromolecules 42 (19), 7579–7588 (2009) 
 
 
 
 
 
 
 
 
 
 

 Voth group, bio systems: 
◦ Multiscale Coarse-Graining of the Protein Energy Landscape 

Hills et al, PLoS Comput Biol. 6(6), e1000827 (2010) 



 Coarse-graining provides a systematic way to 
parameterize a force-field based on selected properties 
of a reference system. Can be based on  
◦ Pair distribution functions 

 Boltzmann inversion 
 Iterative Boltzmann Inversion 
 Inverse Monte Carlo 

◦ Many-body potential of mean force  
 force matching  

◦ Desired thermodynamic property  
 Simplex algorithm  
 

  Be careful 
◦ CG models never reproduce all properties 
◦ CG force-fields parameterized at a specific state point 
◦ RDF reproduced, but no predictions for other (thermodynamic) 

properties and higher order correlations (e.g. pressure, 
tetrahedral packing) 



www.votca.org 


