
ESPResSo Summer School 2012ESPResSo Summer School 2012

ESPResSo++ and AdResS

Staš Bevc
National Institute

of Chemistry, Slovenia

AcknowledgementsAcknowledgements

● Special thanks to the ESPResSo++
developer team

Current developers:

Torsten Stuehn (Max Planck Institute for Polymer Research, Germany)
Vitalii Starchenko (Max Planck Institute for Polymer Research, Germany)
Konstantin Koschke (Max Planck Institute for Polymer Research, Germany)
Livia Moreira (Max Planck Institute for Polymer Research, Germany)
Raffaello Potestio (Max Planck Institute for Polymer Research, Germany)
Karsten Kreis (Max Planck Institute for Polymer Research, Germany)

Former developers:

Thomas Brandes (Fraunhofer Institute SCAI, Germany)
Dirk Reith (Fraunhofer Institute SCAI, Germany)
Jonathan Halverson (Brookhaven National Laboratory, USA)
Axel Arnold (Institute for Computational Physics, Uni-Stuttgart, Germany)
Olaf Lenz (Institute for Computational Physics, Uni-Stuttgart, Germany)
Christoph Junghans (Los Alamos National Laboratory, USA)
Victor Ruehle (University of Cambridge, UK)

9th October 2012 ESPResSo Summer School, Staš Bevc 3

OutlineOutline

● Introduction to AdResS
● AdResS implementation in ESPResSo++
● Tetrahedral molecule example

Introduction to AdResS

9th October 2012 ESPResSo Summer School, Staš Bevc 5

Introduction to Introduction to AdResSAdResS

● Motivation

9th October 2012 ESPResSo Summer School, Staš Bevc 6

Introduction to Introduction to AdResSAdResS

● Motivation

image source: Internet

9th October 2012 ESPResSo Summer School, Staš Bevc 7

Introduction to Introduction to AdResSAdResS

9th October 2012 ESPResSo Summer School, Staš Bevc 8

Introduction to Introduction to AdResSAdResS

● Force calculation:

F ij=w iw jF ij

AT
+(1−w iw j)F ij

CG

9th October 2012 ESPResSo Summer School, Staš Bevc 9

Introduction to Introduction to AdResSAdResS

AdResS implementation in ESPResSo++

9th October 2012 ESPResSo Summer School, Staš Bevc 11

Implementation in ESPResSo++Implementation in ESPResSo++

● General idea: we build two Verlet lists

F ij=F ij
CGF ij=w iw jF ij

AT
+(1−w iw j)F ij

CG

9th October 2012 ESPResSo Summer School, Staš Bevc 12

Implementation in ESPResSo++Implementation in ESPResSo++

● General idea: atomistic particles act as an
additional property of the coarse grained
particles
– there is a mapping from a CG particle to a list

of AT particles (via the TupleList)
std::map<Particle*, std::vector<Particle*> >

– atomistic particles are always present

9th October 2012 ESPResSo Summer School, Staš Bevc 13

Implementation in ESPResSo++Implementation in ESPResSo++

● AdResS is an extension of the integrator
– but changes to other code and new classes

were also introduced
● The new (atomistic) particles have to be

integrated
– we connect to 3 integrator signals:

● inIntP
● afterInitF
● afterIntV

9th October 2012 ESPResSo Summer School, Staš Bevc 14

Implementation in ESPResSo++Implementation in ESPResSo++

SystemAccess

MDIntegrator Extension

VelocityVerlet Adress

Integrate1()

InitForces()

Integrate2()

Integrate1()

InitForces()

Integrate2()

inIntP

aftInitF

aftInitV

9th October 2012 ESPResSo Summer School, Staš Bevc 15

Implementation in ESPResSo++Implementation in ESPResSo++

● New classes
– VerletListAdress
– VerletListAdressInteractionTemplate
– DomainDecompostionAdress
– FixedTupleList
– FixedPair/Triple/QuadrupleListAdress

● New functions and data structures
– Storage
– Particle

16

Implementation in ESPResSo++Implementation in ESPResSo++

● For spherical
Real3D dist = pos() ref();
real distsq = dist.sqr();

● For planar
real dist = pos()[0] ref()[0];
real distsq = dist.sqr();

● Spherical geometry by default, but can be
planar with minor code changes

9th October 2012 ESPResSo Summer School, Staš Bevc 17

Implementation in ESPResSo++Implementation in ESPResSo++

● What about the time?
● Is there any speedup with AdResS?

9th October 2012 ESPResSo Summer School, Staš Bevc 18

Implementation in ESPResSo++Implementation in ESPResSo++

● What about the time?
● Is there any speedup with AdResS?

● The force calculation is faster

9th October 2012 ESPResSo Summer School, Staš Bevc 19

Implementation in ESPResSo++Implementation in ESPResSo++

● What about the time?
● Is there any speedup with AdResS?

● The force calculation is faster
● But in total it is slower

Tetrahedral molecule example

9th October 2012 ESPResSo Summer School, Staš Bevc 21

Tetrahedral exampleTetrahedral example

prepare AT particles
allParticlesAT = []
allParticles = []
tuples = []
for pidAT in range(num_particles):
 #print pidAT,
 allParticlesAT.append([pidAT, # add here these particles just temporarily!
 Real3D(x[pidAT], y[pidAT], z[pidAT]),
 Real3D(vx[pidAT], vy[pidAT], vz[pidAT]),
 Real3D(fx[pidAT], fy[pidAT], fz[pidAT]),
 1, 1.0, 1]) # type, mass, is AT particle

AdResS domain decomposition
system.storage = espresso.storage.DomainDecompositionAdress(system, nodeGrid,
cellGrid)

22

Tetrahedral exampleTetrahedral example

create CG particles from center of mass
for pidCG in range(num_particlesCG):
 cmp = [0,0,0]
 cmv = [0,0,0]
 tmptuple = [pidCG+num_particles]
 # com calculation
 for pidAT in range(4):
 pid = pidCG*4+pidAT
 tmptuple.append(pid)
 pos = (allParticlesAT[pid])[1]
 vel = (allParticlesAT[pid])[2]
 for i in range(3):
 cmp[i] += pos[i] # masses are 1.0 so we skip
multiplication
 cmv[i] += vel[i]
 for i in range(3):
 cmp[i] /= 4.0 # 4.0 is the mass of molecule
 cmv[i] /= 4.0

23

Tetrahedral exampleTetrahedral example
create CG particles from center of mass
for pidCG in range(num_particlesCG):

…

allParticles.append([pidCG+num_particles, # CG particle first!
 Real3D(cmp[0], cmp[1], cmp[2]), # pos
 Real3D(cmv[0], cmv[1], cmv[2]), # vel
 Real3D(0, 0, 0), # f
 0, 4.0, 0]) # type, mass, is not AT particle

for pidAT in range(4):
 pid = pidCG*4+pidAT

 allParticles.append([pid, # now the AT particles can be added
 (allParticlesAT[pid])[1], # pos
 (allParticlesAT[pid])[2], # vel
 (allParticlesAT[pid])[3], # f
 (allParticlesAT[pid])[4], # type
 (allParticlesAT[pid])[5], # mass
 (allParticlesAT[pid])[6]]) # is AT particle

tuples.append(tmptuple)

24

Tetrahedral exampleTetrahedral example
create CG particles from center of mass
for pidCG in range(num_particlesCG):

…

allParticles.append([pidCG+num_particles, # CG particle first!
 Real3D(cmp[0], cmp[1], cmp[2]), # pos
 Real3D(cmv[0], cmv[1], cmv[2]), # vel
 Real3D(0, 0, 0), # f
 0, 4.0, 0]) # type, mass, is not AT particle

for pidAT in range(4):
 pid = pidCG*4+pidAT

 allParticles.append([pid, # now the AT particles can be added
 (allParticlesAT[pid])[1], # pos
 (allParticlesAT[pid])[2], # vel
 (allParticlesAT[pid])[3], # f
 (allParticlesAT[pid])[4], # type
 (allParticlesAT[pid])[5], # mass
 (allParticlesAT[pid])[6]]) # is AT particle

tuples.append(tmptuple)

9th October 2012 ESPResSo Summer School, Staš Bevc 25

Tetrahedral exampleTetrahedral example

add particles
system.storage.addParticles(allParticles, "id", "pos", "v", "f", "type", "mass",
"adrat")

add tuples
ftpl = espresso.FixedTupleList(system.storage)
ftpl.addTuples(tuples)
system.storage.setFixedTuples(ftpl)

add bonds between AT particles
fpl = espresso.FixedPairListAdress(system.storage, ftpl)
fpl.addBonds(bonds)

9th October 2012 ESPResSo Summer School, Staš Bevc 26

Tetrahedral exampleTetrahedral example

AdResS Verlet list
vl = espresso.VerletListAdress(system, cutoff=rc+skin,
adrcut=rc+skin,
 dEx=ex_size, dHy=hy_size,
 adrCenter=[18.42225, 18.42225, 18.42225])

non-bonded potentials
LJ Capped WCA between AT and tabulated Morse between CG particles
interNB = espresso.interaction.VerletListAdressLennardJonesCapped(vl, ftpl)
potWCA = espresso.interaction.LennardJonesCapped(epsilon=1.0, sigma=1.0, shift=True,
caprad=0.27, cutoff=rca)
potMorse = espresso.interaction.Tabulated(itype=2, filename=tabMorse, cutoff=rc) # CG
interNB.setPotentialAT(type1=1, type2=1, potential=potWCA) # AT
interNB.setPotentialCG(type1=0, type2=0, potential=potMorse) # CG
system.addInteraction(interNB)

9th October 2012 ESPResSo Summer School, Staš Bevc 27

Tetrahedral exampleTetrahedral example

bonded potentials
FENE and LJ potential between AT particles
potFENE = espresso.interaction.FENE(K=30.0, r0=0.0, rMax=1.5)
potLJ = espresso.interaction.LennardJones(epsilon=1.0, sigma=1.0, shift=True, cutoff=rca)
interFENE = espresso.interaction.FixedPairListFENE(system, fpl, potFENE)
interLJ = espresso.interaction.FixedPairListLennardJones(system, fpl, potLJ)
system.addInteraction(interFENE)
system.addInteraction(interLJ)

9th October 2012 ESPResSo Summer School, Staš Bevc 28

Tetrahedral exampleTetrahedral example

VV integrator
integrator = espresso.integrator.VelocityVerlet(system)
integrator.dt = timestep

add AdResS extension
adress = espresso.integrator.Adress(system)
integrator.addExtension(adress)

add Langevin thermostat extension
langevin =
espresso.integrator.LangevinThermostat(system)
langevin.gamma = gamma
langevin.temperature = temp
langevin.adress = True # enable AdResS!
integrator.addExtension(langevin)

9th October 2012 ESPResSo Summer School, Staš Bevc 29

Tetrahedral exampleTetrahedral example

● Things to try out
– Run the simulation with different explicit and

hybrid sizes (ex_size, hy_size)
● Also try CG and AA

– Compare the times it takes to finish the
simulation

– Modify the code to get 1-dimensional
splitting

