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● Introduction to AdResS
● AdResS implementation in ESPResSo++
● Tetrahedral molecule example
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Introduction to Introduction to AdResSAdResS

● Force calculation:

F ij=w iw jF ij

AT
+(1−w iw j)F ij

CG
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Introduction to Introduction to AdResSAdResS



AdResS implementation in ESPResSo++
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Implementation in ESPResSo++Implementation in ESPResSo++

● General idea: we build two Verlet lists

F ij=F ij
CGF ij=w iw jF ij

AT
+(1−w iw j)F ij

CG
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Implementation in ESPResSo++Implementation in ESPResSo++

● General idea: atomistic particles act as an 
additional property of the coarse grained 
particles
– there is a mapping from a CG particle to a list 

of AT particles (via the TupleList)
std::map<Particle*, std::vector<Particle*> >

– atomistic particles are always present



9th October 2012 ESPResSo Summer School, Staš Bevc 13

Implementation in ESPResSo++Implementation in ESPResSo++

● AdResS is an extension of the integrator
– but changes to other code and new classes 

were also introduced
● The new (atomistic) particles have to be 

integrated
– we connect to 3 integrator signals:

● inIntP
● afterInitF
● afterIntV
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Implementation in ESPResSo++Implementation in ESPResSo++

SystemAccess

MDIntegrator Extension

VelocityVerlet Adress

Integrate1()

InitForces()

Integrate2()

Integrate1()

InitForces()

Integrate2()

inIntP

aftInitF

aftInitV
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Implementation in ESPResSo++Implementation in ESPResSo++

● New classes
– VerletListAdress
– VerletListAdressInteractionTemplate
– DomainDecompostionAdress
– FixedTupleList
– FixedPair/Triple/QuadrupleListAdress

● New functions and data structures
– Storage
– Particle
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Implementation in ESPResSo++Implementation in ESPResSo++

● For spherical
Real3D dist = pos()  ref();
real distsq = dist.sqr();

● For planar
real dist = pos()[0]  ref()[0];
real distsq = dist.sqr();

● Spherical geometry by default, but can be 
planar with minor code changes
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Implementation in ESPResSo++Implementation in ESPResSo++

● What about the time?
● Is there any speedup with AdResS?
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Implementation in ESPResSo++Implementation in ESPResSo++

● What about the time?
● Is there any speedup with AdResS?

● The force calculation is faster
● But in total it is slower



Tetrahedral molecule example
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Tetrahedral exampleTetrahedral example

# prepare AT particles
allParticlesAT = []
allParticles = []
tuples = []
for pidAT in range(num_particles):
    #print pidAT,
    allParticlesAT.append([pidAT, # add here these particles just temporarily! 
                         Real3D(x[pidAT], y[pidAT], z[pidAT]),
                         Real3D(vx[pidAT], vy[pidAT], vz[pidAT]),
                         Real3D(fx[pidAT], fy[pidAT], fz[pidAT]),
                         1, 1.0, 1]) # type, mass, is AT particle

# AdResS domain decomposition
system.storage = espresso.storage.DomainDecompositionAdress(system, nodeGrid, 
cellGrid)
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Tetrahedral exampleTetrahedral example

# create CG particles from center of mass
for pidCG in range(num_particlesCG):
    cmp = [0,0,0]
    cmv = [0,0,0]
    tmptuple = [pidCG+num_particles]
    # com calculation
    for pidAT in range(4):
        pid = pidCG*4+pidAT
        tmptuple.append(pid)
        pos = (allParticlesAT[pid])[1]
        vel = (allParticlesAT[pid])[2]
        for i in range(3):
            cmp[i] += pos[i] # masses are 1.0 so we skip 
multiplication
            cmv[i] += vel[i]
    for i in range(3):
        cmp[i] /= 4.0 # 4.0 is the mass of molecule
        cmv[i] /= 4.0
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Tetrahedral exampleTetrahedral example
# create CG particles from center of mass
for pidCG in range(num_particlesCG):

…

allParticles.append([pidCG+num_particles, # CG particle first!
                         Real3D(cmp[0], cmp[1], cmp[2]), # pos
                         Real3D(cmv[0], cmv[1], cmv[2]), # vel
                         Real3D(0, 0, 0), # f
                         0, 4.0, 0]) # type, mass, is not AT particle

for pidAT in range(4): 
       pid = pidCG*4+pidAT

       allParticles.append([pid, # now the AT particles can be added
                            (allParticlesAT[pid])[1], # pos
                            (allParticlesAT[pid])[2], # vel
                            (allParticlesAT[pid])[3], # f
                            (allParticlesAT[pid])[4], # type
                            (allParticlesAT[pid])[5], # mass
                            (allParticlesAT[pid])[6]]) # is AT particle 
        

tuples.append(tmptuple)
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Tetrahedral exampleTetrahedral example
# create CG particles from center of mass
for pidCG in range(num_particlesCG):

…

allParticles.append([pidCG+num_particles, # CG particle first!
                         Real3D(cmp[0], cmp[1], cmp[2]), # pos
                         Real3D(cmv[0], cmv[1], cmv[2]), # vel
                         Real3D(0, 0, 0), # f
                         0, 4.0, 0]) # type, mass, is not AT particle

for pidAT in range(4): 
       pid = pidCG*4+pidAT

       allParticles.append([pid, # now the AT particles can be added
                            (allParticlesAT[pid])[1], # pos
                            (allParticlesAT[pid])[2], # vel
                            (allParticlesAT[pid])[3], # f
                            (allParticlesAT[pid])[4], # type
                            (allParticlesAT[pid])[5], # mass
                            (allParticlesAT[pid])[6]]) # is AT particle 
        

tuples.append(tmptuple)
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Tetrahedral exampleTetrahedral example

# add particles
system.storage.addParticles(allParticles, "id", "pos", "v", "f", "type", "mass", 
"adrat")

# add tuples
ftpl = espresso.FixedTupleList(system.storage)
ftpl.addTuples(tuples)
system.storage.setFixedTuples(ftpl)

# add bonds between AT particles
fpl = espresso.FixedPairListAdress(system.storage, ftpl)
fpl.addBonds(bonds)
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Tetrahedral exampleTetrahedral example

# AdResS Verlet list
vl = espresso.VerletListAdress(system, cutoff=rc+skin, 
adrcut=rc+skin,
                                dEx=ex_size, dHy=hy_size,
                                adrCenter=[18.42225, 18.42225, 18.42225])

# non-bonded potentials
# LJ Capped WCA between AT and tabulated Morse between CG particles
interNB = espresso.interaction.VerletListAdressLennardJonesCapped(vl, ftpl)
potWCA  = espresso.interaction.LennardJonesCapped(epsilon=1.0, sigma=1.0, shift=True, 
caprad=0.27, cutoff=rca)
potMorse = espresso.interaction.Tabulated(itype=2, filename=tabMorse, cutoff=rc) # CG
interNB.setPotentialAT(type1=1, type2=1, potential=potWCA) # AT
interNB.setPotentialCG(type1=0, type2=0, potential=potMorse) # CG
system.addInteraction(interNB)
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Tetrahedral exampleTetrahedral example

# bonded potentials
# FENE and LJ potential between AT particles
potFENE = espresso.interaction.FENE(K=30.0, r0=0.0, rMax=1.5)
potLJ = espresso.interaction.LennardJones(epsilon=1.0, sigma=1.0, shift=True, cutoff=rca)
interFENE = espresso.interaction.FixedPairListFENE(system, fpl, potFENE)
interLJ = espresso.interaction.FixedPairListLennardJones(system, fpl, potLJ)
system.addInteraction(interFENE)
system.addInteraction(interLJ)
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Tetrahedral exampleTetrahedral example

# VV integrator
integrator = espresso.integrator.VelocityVerlet(system)
integrator.dt = timestep

# add AdResS extension
adress = espresso.integrator.Adress(system)
integrator.addExtension(adress)

# add Langevin thermostat extension
langevin = 
espresso.integrator.LangevinThermostat(system)
langevin.gamma = gamma
langevin.temperature = temp
langevin.adress = True # enable AdResS!
integrator.addExtension(langevin)
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Tetrahedral exampleTetrahedral example

● Things to try out
– Run the simulation with different explicit and 

hybrid sizes (ex_size, hy_size)
● Also try CG and AA

– Compare the times it takes to finish the 
simulation

– Modify the code to get 1-dimensional 
splitting


