Centre Européen de Calcul B
1 Atomigue et Moléculaire

m SORAX XN INSTITUTE FOR
& CeCalhl simTech s Universitat - gESS coururamona
C|u5ter of Excellence 2@2::::2:‘:3’::@& Stuttgart '.;.Oq PHYSICS

eeeeeeee
®®®®®

ESPResSo Summer School 2012

Introduction to Tcl

Pedro A. Sanchez

Institute for Computational Physics

Allmandring 3
D-70569 Stuttgart
Germany

Outline

» History, Characteristics, Online resources, Getting things running
» Variables, grouping and nested commands
» Math expressions

» Control structures

Hands on!
» User defined commands

Hands on!
» Lists and Arrays

Hands on!

» Working with files, command line arguments, modularization

Hands on!

http://www.icp.uni-stuttgart.de 2/26

History

» “Tool command language”, pronounced
“tickle” or “tee-see-ell”

» John Ousterhout, Berkley, 1988

» Originally invented for GUI programming
(Tcl/Tk)

» Very successful language in the 1990s,
adopted by many companies

» Not very active and popular anymore

» Some scientific programs still use Tcl/Tk, e.qg.
VMD and NAMD

» ... but most are slowly switching to Python...

http://www.icp.uni-stuttgart.de 3/26

Characteristics

» Interpreted scripting language, cross-platform (available almost
everywhere), originally (and mainly used as) procedural

» Motto: “Radically simple”. Simple syntax
» No data types: all data treated as strings

» All operations are commands (=functions), including control
structures

» Dynamic: everything can be (re-)defined easily, including source
code

» Simple C-API, easy to extend and embed
» Free, open-source (BSD license)
» Current version 8.5.12 (July 27, 2012)

http://www.icp.uni-stuttgart.de 4/26

Online resources

» Huge documentation and resources at the official
website: http://www.tcl.tk

» http://wiki.tcl.tk/

» Built-in commands quick reference:
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm

» Complete tutorial:
http://www.tcl.tk/man/tcl/tutorial/tcltutorial.html

» Nice interactive offline tutorial for self-learning, written
In Tcl/Tk: http://www.msen.com/~clif/TcITutor.ntml

http://www.icp.uni-stuttgart.de 5/26

http://www.tcl.tk/
http://wiki.tcl.tk/
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm
http://www.tcl.tk/man/tcl/tutorial/tcltutorial.html
http://www.msen.com/~clif/TclTutor.html

Getting things running...

» Interactive consoles:

» Standard interpreter: tclsh ¢
» Improved console: tkcon §
» http://tkcon.sourceforge.net/

» Script files:

» Usual extension: *.tcl
» Run from command line:

‘ $>tclsh myNiceScript.tcl

» Executable scripts: prepend script with
‘ #!/usr/bin/tclsh

http://www.icp.uni-stuttgart.de 6/26

http://tkcon.sourceforge.net/

Hello world!

» General syntax:

‘ command argumentl argument2 ...

» Commands end with newline or semicolon ;
»"" or {} used to group arguments

» Arguments are represented as strings

» Comments start with #

This 1is a comment

puts "Hello World!"

puts "This is line 1"; puts "this is line 2"

puts "Hello, World - In quotes" ;# This is a comment
puts "Hello, World; - semicolon inside the quotes"
puts {Hello, World — in Braces

puts HelloWorld

puts {Bad syntax example} # *Error* no semicolon!

http://www.icp.uni-stuttgart.de 7126

Variables

» Assignement command: set

set variableName value

» Variable substitution: before a command is executed all
variables, referenced as $variableName, are substituted for
Its value

» Backslash \ prevents subtitution of the next character. Usual
backslashed codes (“backslash-sequences”) exist \n, \t, ...

» Unset variables are reported

set myMessage "Hello World!"
puts $myMessage

set a 1.0

puts $a+$a

puts $a\n$%a

puts \$%a

puts $unknownVar

http://www.icp.uni-stuttgart.de 8/26

Variable substitution and argument
grouping

» Argument grouping via " ":
» Variable substitution and backslash-sequences work
» Use for strings
» Argument grouping via { }:
» No substitution nor backslash-seguences
» Use for code blocks

set myMessage "Hello World!"

puts "Say $myMessage\nNext line”

puts {Say $myMessage\nNext line}

set myFullMessage "Say $myMessage\nNext line”
puts $myFullMessage

http://www.icp.uni-stuttgart.de 9/26

Nested commands

» Command substitution: strings within square brackets []
are evaluated as commands

» Variable substitution works within command substitution

» Command substitution works within quotes, not within
braces

set y [set x "def"] ;# command set returns the assigned value

set x "def"
set z [set y $x]

set z "[set x {This 1s a string within braces within quotes}]"

set z {[set x "This 1s a string within quotes within braces"]}

http://www.icp.uni-stuttgart.de 10/26

Math: expression evaluation

» Mathematical operations computed with the command
expr

» Expressions mostly like C operators and mathematical
functions: +, -, *, /, %, pow, sin, CO0Ss, ...

puts "1+1”

puts 1+1

puts [expr 1+1]
puts [expr "1+1"]

puts [expr 1/2]
puts [expr 1./2]

set x 2
puts "$x plus $x 1s [expr $x+$x]"
puts "The square root of $x is [expr sqrt($x)]"

puts [expr pow($x,2)]
puts [expr ($x+1) % 2]

http://www.icp.uni-stuttgart.de 11/26

Math: type conversion and random
numbers

» Since all data is treated as a string, numbers should be
transformed to and from strings — slow numerics in Tcl!!!!

» Explicit type conversions: abs, int, double, round

» Tcl provides a pseudo-random number generator: rand (),
srand()

puts [expr double(l)]
puts [expr rand()] ;# pseudo-random number (0., 1.)

expr srand(l) ;# set seed for a reproducible sequence

expr rand()

http://www.icp.uni-stuttgart.de 12/26

Control structures: conditionals

» The 1f command:

‘ if exprl then bodyl elseif expr2 then body2 ... else bodyN

» The words then and else are optional

» The test expressions following the word 1f are evaluated
as in the expr command

set x 1
if {$x == 1} {puts "x is 1"} else {puts "x is not 1"}

mind the spaces between arguments!!!
if {$x == 1}{puts "x is 1"}

if {$x == 1} { ;# this is more readable in scripts
puts "x is 1"

} else {
puts "x 1is not 1"

}

http://www.icp.uni-stuttgart.de 13/26

Control structures: loops

» The while command:

‘ while test body

» The for command:

‘ for start test next body

» The command break breaks a loop. The command 1incr
Increments the integer value of a variable

set 1 0
while {$1 < 3} {puts $i; incr i}

for {set i 0} {$i<3} {incr i} {puts $i}

for {set 1 0} {$1<3} {incr i} {
puts $i
}

http://www.icp.uni-stuttgart.de 14/26

Hands on!

» Write a tcl script to calculate the center of mass of this
system: 1
» 100 point particles R B
In a square x-y lattice: >l o

1 @ ©® - @
(X, Vy={(1, 1); (1, 2); ... T,
1 2 10

...; (10, 9); (10, 10)}
» Mass depends on the product of the coordinates:

» Particles with even product X*Y have mass 2.0 (“even
mass”)

» Particles with odd product X*Y have mass 1.0 (“odd
mass”) @

http://www.icp.uni-stuttgart.de 15/26

Adding new commands

» Command proc creates a new command

proc commandName arguments body

» All variables in body are local (including arguments) except
those explicitly declared global with global or upvar

» The new command returns to the caller a value optionally
specified with return or the output of the last command
found within body by default

set myglobal "global"; set othervar "other"
proc myProc {argl {arg2 "default"}} {
global myglobal;
puts "argl 1s $argl"; puts "arg2 is $arg2"
puts "Global var is $myglobal"; return "returned"

}

set result [myProc "first"]

http://www.icp.uni-stuttgart.de 16/26

Pass-by-reference to procs

» Pass-by-reference of variables to commands is emulated
with upvar:

proc myIncr {argl {arg2 1}} {
upvar $argl res
set res [expr res + $arg2]
return $res

}

set a l
puts [myIncr a]j

http://www.icp.uni-stuttgart.de 17/26

Hands on!

» Rewrite your script using a command definition:

» Write a command to calculate the COM of the x-y
sguare lattice system for NxN particles and arbitrary
“even” and “odd masses”

» Particles with even product
X*Y have “even mass”

» Particles with odd product N 1 Q
X*Y have “odd mass”

1+ © O o
| R

1 2 N
7

http://www.icp.uni-stuttgart.de 18/26

Lists

» Alist is just an ordered collection of data, is the basic data
structure in Tcl. Lists are strings, can be defined in many
ways

» Data items can be accessed and extended with list
commands: lindex, foreach, lappend, Llength

» Lists can be nested

set myList "1 2 3", set myList {1 2 3}

puts [lindex $myList 2]; puts [llength $myList]
foreach j $myList {puts $j}

lappend myList 4 5 6; puts $mylList

set myEmptyList {} ; lappend myEmptyList {Not empty anymore!!}

set Nested {{1 2 3} {4 5 6}};set Nested [list "1 2 3" "4 5 6"]
puts [lindex $myNestedlList O 1]

http://www.icp.uni-stuttgart.de 19/26

Arrays

» Associative arrays (lists of key-value pairs) can be defined
either by putting the key within parentheses ():

set myArray(l) One
puts $myArray(1l)

» or from a list of key-value pairs using the array
command:

array set myArray [list 1 One 2 Two 3 Three]
puts $myArray(1l)

» Multidimensional arrays can be emulated using smart
strings as keys:

set myArray(l,1) {One One}
puts $myArray(1l,1)

http://www.icp.uni-stuttgart.de 20/26

Hands on!

» Rewrite your script using lists and/or arrays

» Write two separated commands, one to generate
the positions and masses of the x-y lattice system
and the other one to calculate the COM of a

collection of arbitrary positions and masses passed
as arguments

http://www.icp.uni-stuttgart.de 21/26

Working with files

» Get a I/O channel to access a file:

‘ open fileName access

where access sets the channel for reading (default), "r,
writing, "w" or append "a". Read/write data with commands
gets/puts. Close channel with close

» Parse lines of data read from files with command split

set fp [open "myfile.dat" "w"]
puts $fp "1,2\n3,4\n"
close $fp

set fp [open "| cat /proc/cpuinfo"]; #open a pipe
puts [gets $fpl; #read a line of data

set fp [open "myfile.dat" "r"]
set data [split [gets $fp] ","]; #split using “,” as delimiter

http://www.icp.uni-stuttgart.de 22/26

Command line arguments
» Number of command line arguments in global variable
$argc
» Name of the script in global variable $argv0

» List of command line arguments in global variable
$argv

puts "There are $argc arguments to this script”
puts "The name of this script 1is $argv0"
if {$argc > 0} {

puts "Arguments are $argv"

}

http://www.icp.uni-stuttgart.de 23/26

Modularization

» The source command loads and executes a Tcl
script:

‘ source scriptName

» This allows to split a program in different files, useful
for code reutilization and maintenance

http://www.icp.uni-stuttgart.de 24/26

Hands on!

» Write a more flexible and modularized version of the
COM calculation program:

» Split the commands for the generation of the x-y lattice
system and the calculation of the COM Into separate

Scripts

» Write a main script which loads the splitted command
scripts, generates the system according to command
line arguments and makes the calculation

» Alternatively, make the lattice generator script an
Independent program that works with command line
arguments and writes the system data into a file. Make
the main COM script to load and parse the data file for

the calculation

http://www.icp.uni-stuttgart.de 25/26

Thank you!

