
ESPResSo Summer School 2012

Institute for Computational Physics
Allmandring 3

D-70569 Stuttgart
Germany

Pedro A. Sánchez

Introduction to Tcl

http://www.icp.uni-stuttgart.de 2/26

OutlineOutline
History, Characteristics, Online resources, Getting things running

Variables, grouping and nested commands

Math expressions

Control structures

User defined commands

Lists and Arrays

Working with files, command line arguments, modularization

Hands on!

Hands on!

Hands on!

Hands on!

http://www.icp.uni-stuttgart.de 3/26

HistoryHistory

“Tool command language”, pronounced
“tickle” or “tee-see-ell”

John Ousterhout, Berkley, 1988

Originally invented for GUI programming
(Tcl/Tk)

Very successful language in the 1990s,
adopted by many companies

Not very active and popular anymore

Some scientific programs still use Tcl/Tk, e.g.
VMD and NAMD

… but most are slowly switching to Python...

http://www.icp.uni-stuttgart.de 4/26

CharacteristicsCharacteristics

Interpreted scripting language, cross-platform (available almost
everywhere), originally (and mainly used as) procedural

Motto: “Radically simple”. Simple syntax

No data types: all data treated as strings

All operations are commands (=functions), including control
structures

Dynamic: everything can be (re-)defined easily, including source
code

Simple C-API, easy to extend and embed

Free, open-source (BSD license)

Current version 8.5.12 (July 27, 2012)

http://www.icp.uni-stuttgart.de 5/26

Online resourcesOnline resources

Huge documentation and resources at the official
website: http://www.tcl.tk

http://wiki.tcl.tk/

Built-in commands quick reference:
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm

Complete tutorial:
http://www.tcl.tk/man/tcl/tutorial/tcltutorial.html

Nice interactive offline tutorial for self-learning, written
in Tcl/Tk: http://www.msen.com/~clif/TclTutor.html

http://www.tcl.tk/
http://wiki.tcl.tk/
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm
http://www.tcl.tk/man/tcl/tutorial/tcltutorial.html
http://www.msen.com/~clif/TclTutor.html

http://www.icp.uni-stuttgart.de 6/26

Getting things running...Getting things running...

Interactive consoles:
Standard interpreter: tclsh

Improved console: tkcon

http://tkcon.sourceforge.net/

Script files:
Usual extension: *.tcl

Run from command line:

Executable scripts: prepend script with

$>tclsh myNiceScript.tcl$>tclsh myNiceScript.tcl

#!/usr/bin/tclsh#!/usr/bin/tclsh

http://tkcon.sourceforge.net/

http://www.icp.uni-stuttgart.de 7/26

Hello world!Hello world!

This is a comment
puts "Hello World!"
puts "This is line 1"; puts "this is line 2"
puts "Hello, World - In quotes" ;# This is a comment
puts "Hello, World; - semicolon inside the quotes"
puts {Hello, World – in Braces}
puts HelloWorld
puts {Bad syntax example} # *Error* no semicolon!

This is a comment
puts "Hello World!"
puts "This is line 1"; puts "this is line 2"
puts "Hello, World - In quotes" ;# This is a comment
puts "Hello, World; - semicolon inside the quotes"
puts {Hello, World – in Braces}
puts HelloWorld
puts {Bad syntax example} # *Error* no semicolon!

General syntax:

Commands end with newline or semicolon ;

"" or {} used to group arguments

Arguments are represented as strings

Comments start with #

command argument1 argument2 ...command argument1 argument2 ...

http://www.icp.uni-stuttgart.de 8/26

VariablesVariables

set myMessage "Hello World!"
puts $myMessage
set a 1.0
puts $a+$a
puts $a\n$a
puts \$a
puts $unknownVar

set myMessage "Hello World!"
puts $myMessage
set a 1.0
puts $a+$a
puts $a\n$a
puts \$a
puts $unknownVar

set variableName valueset variableName value

Assignement command: set

Variable substitution: before a command is executed all
variables, referenced as $variableName, are substituted for
its value

Backslash \ prevents subtitution of the next character. Usual
backslashed codes (“backslash-sequences”) exist \n, \t, ...

Unset variables are reported

http://www.icp.uni-stuttgart.de 9/26

Variable substitution and argument Variable substitution and argument
groupinggrouping

set myMessage "Hello World!"
puts "Say $myMessage\nNext line”
puts {Say $myMessage\nNext line}
set myFullMessage "Say $myMessage\nNext line”
puts $myFullMessage

set myMessage "Hello World!"
puts "Say $myMessage\nNext line”
puts {Say $myMessage\nNext line}
set myFullMessage "Say $myMessage\nNext line”
puts $myFullMessage

Argument grouping via "":

Variable substitution and backslash-sequences work

Use for strings

Argument grouping via {}:

No substitution nor backslash-sequences

Use for code blocks

http://www.icp.uni-stuttgart.de 10/26

Nested commandsNested commands

set y [set x "def"] ;# command set returns the assigned value

set x "def"
set z [set y $x]

set z "[set x {This is a string within braces within quotes}]"

set z {[set x "This is a string within quotes within braces"]}

set y [set x "def"] ;# command set returns the assigned value

set x "def"
set z [set y $x]

set z "[set x {This is a string within braces within quotes}]"

set z {[set x "This is a string within quotes within braces"]}

Command substitution: strings within square brackets []
are evaluated as commands

Variable substitution works within command substitution

Command substitution works within quotes, not within
braces

http://www.icp.uni-stuttgart.de 11/26

Math: expression evaluationMath: expression evaluation

puts "1+1”
puts 1+1
puts [expr 1+1]
puts [expr "1+1”]

puts [expr 1/2]
puts [expr 1./2]

set x 2
puts "$x plus $x is [expr $x+$x]"
puts "The square root of $x is [expr sqrt($x)]"

puts [expr pow($x,2)]
puts [expr ($x+1) % 2]

puts "1+1”
puts 1+1
puts [expr 1+1]
puts [expr "1+1”]

puts [expr 1/2]
puts [expr 1./2]

set x 2
puts "$x plus $x is [expr $x+$x]"
puts "The square root of $x is [expr sqrt($x)]"

puts [expr pow($x,2)]
puts [expr ($x+1) % 2]

Mathematical operations computed with the command
expr

Expressions mostly like C operators and mathematical
functions: +, -, *, /, %, pow, sin, cos, ...

http://www.icp.uni-stuttgart.de 12/26

Math: type conversion and random Math: type conversion and random
numbersnumbers

puts [expr double(1)]

puts [expr rand()] ;# pseudo-random number (0., 1.)

expr srand(1) ;# set seed for a reproducible sequence

expr rand()

puts [expr double(1)]

puts [expr rand()] ;# pseudo-random number (0., 1.)

expr srand(1) ;# set seed for a reproducible sequence

expr rand()

Since all data is treated as a string, numbers should be
transformed to and from strings → slow numerics in Tcl!!!!

Explicit type conversions: abs, int, double, round

Tcl provides a pseudo-random number generator: rand(),
srand()

http://www.icp.uni-stuttgart.de 13/26

Control structures: conditionalsControl structures: conditionals

set x 1
if {$x == 1} {puts "x is 1"} else {puts "x is not 1"}

mind the spaces between arguments!!!
if {$x == 1}{puts "x is 1"}

if {$x == 1} { ;# this is more readable in scripts
 puts "x is 1"
} else {
 puts "x is not 1"
}

set x 1
if {$x == 1} {puts "x is 1"} else {puts "x is not 1"}

mind the spaces between arguments!!!
if {$x == 1}{puts "x is 1"}

if {$x == 1} { ;# this is more readable in scripts
 puts "x is 1"
} else {
 puts "x is not 1"
}

The if command:

The words then and else are optional

The test expressions following the word if are evaluated
as in the expr command

if expr1 then body1 elseif expr2 then body2 ... else bodyNif expr1 then body1 elseif expr2 then body2 ... else bodyN

http://www.icp.uni-stuttgart.de 14/26

Control structures: loopsControl structures: loops

set i 0
while {$i < 3} {puts $i; incr i}

for {set i 0} {$i<3} {incr i} {puts $i}

for {set i 0} {$i<3} {incr i} {
 puts $i
}

set i 0
while {$i < 3} {puts $i; incr i}

for {set i 0} {$i<3} {incr i} {puts $i}

for {set i 0} {$i<3} {incr i} {
 puts $i
}

The while command:

The for command:

The command break breaks a loop. The command incr
increments the integer value of a variable

while test bodywhile test body

for start test next bodyfor start test next body

http://www.icp.uni-stuttgart.de 15/26

Hands on!Hands on!
Write a tcl script to calculate the center of mass of this
system:

100 point particles

in a square x-y lattice:

{(X, Y)}={(1, 1); (1, 2); …

... ; (10, 9); (10, 10)}

Mass depends on the product of the coordinates:

Particles with even product X*Y have mass 2.0 (“even
mass”)

Particles with odd product X*Y have mass 1.0 (“odd
mass”)

...

...

...

1 2 10

10

2

1

http://www.icp.uni-stuttgart.de 16/26

Adding new commandsAdding new commands

set myglobal "global"; set othervar "other"
proc myProc {arg1 {arg2 "default"}} {
 global myglobal;
 puts "arg1 is $arg1"; puts "arg2 is $arg2"
 puts "Global var is $myglobal"; return "returned"
}

set result [myProc "first"]

set myglobal "global"; set othervar "other"
proc myProc {arg1 {arg2 "default"}} {
 global myglobal;
 puts "arg1 is $arg1"; puts "arg2 is $arg2"
 puts "Global var is $myglobal"; return "returned"
}

set result [myProc "first"]

Command proc creates a new command

All variables in body are local (including arguments) except
those explicitly declared global with global or upvar

The new command returns to the caller a value optionally
specified with return or the output of the last command
found within body by default

proc commandName arguments bodyproc commandName arguments body

http://www.icp.uni-stuttgart.de 17/26

Pass-by-reference to procsPass-by-reference to procs

proc myIncr {arg1 {arg2 1}} {
 upvar $arg1 res

set res [expr res + $arg2]
 return $res
}

set a 1
puts [myIncr a]

proc myIncr {arg1 {arg2 1}} {
 upvar $arg1 res

set res [expr res + $arg2]
 return $res
}

set a 1
puts [myIncr a]

Pass-by-reference of variables to commands is emulated
with upvar:

http://www.icp.uni-stuttgart.de 18/26

Hands on!Hands on!
Rewrite your script using a command definition:

Write a command to calculate the COM of the x-y
square lattice system for NxN particles and arbitrary
“even” and “odd masses”

Particles with even product

X*Y have “even mass”

Particles with odd product

X*Y have “odd mass”

...

...

...

1 2 N

N

2

1

http://www.icp.uni-stuttgart.de 19/26

ListsLists

set myList "1 2 3", set myList {1 2 3}
puts [lindex $myList 2]; puts [llength $myList]
foreach j $myList {puts $j}
lappend myList 4 5 6; puts $myList

set myEmptyList {} ; lappend myEmptyList {Not empty anymore!!}

set Nested {{1 2 3} {4 5 6}};set Nested [list "1 2 3" "4 5 6"]
puts [lindex $myNestedList 0 1]

set myList "1 2 3", set myList {1 2 3}
puts [lindex $myList 2]; puts [llength $myList]
foreach j $myList {puts $j}
lappend myList 4 5 6; puts $myList

set myEmptyList {} ; lappend myEmptyList {Not empty anymore!!}

set Nested {{1 2 3} {4 5 6}};set Nested [list "1 2 3" "4 5 6"]
puts [lindex $myNestedList 0 1]

A list is just an ordered collection of data, is the basic data
structure in Tcl. Lists are strings, can be defined in many
ways

Data items can be accessed and extended with list
commands: lindex, foreach, lappend, llength

Lists can be nested

http://www.icp.uni-stuttgart.de 20/26

ArraysArrays

set myArray(1) One
puts $myArray(1)
set myArray(1) One
puts $myArray(1)

Associative arrays (lists of key-value pairs) can be defined
either by putting the key within parentheses ():

or from a list of key-value pairs using the array
command:

Multidimensional arrays can be emulated using smart
strings as keys:

array set myArray [list 1 One 2 Two 3 Three]
puts $myArray(1)
array set myArray [list 1 One 2 Two 3 Three]
puts $myArray(1)

set myArray(1,1) {One One}
puts $myArray(1,1)
set myArray(1,1) {One One}
puts $myArray(1,1)

http://www.icp.uni-stuttgart.de 21/26

Hands on!Hands on!
Rewrite your script using lists and/or arrays

Write two separated commands, one to generate
the positions and masses of the x-y lattice system
and the other one to calculate the COM of a
collection of arbitrary positions and masses passed
as arguments

http://www.icp.uni-stuttgart.de 22/26

Working with filesWorking with files

set fp [open "myfile.dat" "w"]
puts $fp "1,2\n3,4\n"
close $fp

set fp [open "| cat /proc/cpuinfo"]; #open a pipe
puts [gets $fp]; #read a line of data

set fp [open "myfile.dat" "r"]
set data [split [gets $fp] ","]; #split using “,” as delimiter

set fp [open "myfile.dat" "w"]
puts $fp "1,2\n3,4\n"
close $fp

set fp [open "| cat /proc/cpuinfo"]; #open a pipe
puts [gets $fp]; #read a line of data

set fp [open "myfile.dat" "r"]
set data [split [gets $fp] ","]; #split using “,” as delimiter

Get a I/O channel to access a file:

where access sets the channel for reading (default), "r",
writing, "w" or append "a". Read/write data with commands
gets/puts. Close channel with close

Parse lines of data read from files with command split

open fileName accessopen fileName access

http://www.icp.uni-stuttgart.de 23/26

Command line argumentsCommand line arguments

puts "There are $argc arguments to this script"
puts "The name of this script is $argv0"
if {$argc > 0} {
 puts "Arguments are $argv"
}

puts "There are $argc arguments to this script"
puts "The name of this script is $argv0"
if {$argc > 0} {
 puts "Arguments are $argv"
}

Number of command line arguments in global variable
$argc

Name of the script in global variable $argv0

List of command line arguments in global variable
$argv

http://www.icp.uni-stuttgart.de 24/26

ModularizationModularization
The source command loads and executes a Tcl
script:

This allows to split a program in different files, useful
for code reutilization and maintenance

source scriptNamesource scriptName

http://www.icp.uni-stuttgart.de 25/26

Hands on!Hands on!
Write a more flexible and modularized version of the
COM calculation program:

Split the commands for the generation of the x-y lattice
system and the calculation of the COM into separate
scripts

Write a main script which loads the splitted command
scripts, generates the system according to command
line arguments and makes the calculation

Alternatively, make the lattice generator script an
independent program that works with command line
arguments and writes the system data into a file. Make
the main COM script to load and parse the data file for
the calculation

http://www.icp.uni-stuttgart.de 26/26

Thank you!Thank you!

