

Korea Institute for Advanced Study

Dynamical Properties of the Solution Environment near the Microtubule Surface and their Implication to the Interaction with Motor Protein

Arash Azari

Importance and Functionality:

- Segregation of genetic material
- Intracellular transport
- Maintenance of cell shape
- Positioning of cell organelles
- Extracellular transport by means of cilia
- movement of cells by means of flagella and cilia

- Polarity, vesicle transport
- 11-18 protofilaments ~13
- ~ 50 e negative charges
- 150 mM NaCl
- 10 mM Ca²⁺ and Mg²⁺

• Radial Distribution Function (RDF):

$$g_i(r) = \sum_{t=0}^{T} \sum_{j=1}^{N_W} \frac{\delta(|\mathbf{r}_i(t) - \mathbf{r}_j(t)| - r)}{4\pi r^2 N_W \Delta r}$$

• The normal component, proximal RDF

$$g_{\perp}(r) \propto Inf\left[\left|\mathbf{r}_{i}(t)-\mathbf{r}_{j}(t)\right|\right]$$

Biophys. J. 66 (3), 601-614, (1994), and Biophys J. 75 (1), 150–158, (1998).

Proximal Radial distribution Function (pRDF):

Ions Coordination Numbers:

Average coordination numbers: Mg^{2+} 5.9, Na_{B}^{+} 5.7, Ca^{2+} 3.7 and Na^{+} 3.3.

Translational Diffusion:

$$D_{uvw} = \frac{1}{2d(t_2 - t_1)} \left(\left\langle \left| \mathbf{r}_i(t_2) - \mathbf{r}_i(0) \right|^2 - \left| \mathbf{r}_i(t_1) - \mathbf{r}_i(0) \right|^2 \right\rangle \right)$$

$$\left\langle \Delta r^2 \right\rangle = \left\langle \Delta r_{\parallel}^2 \right\rangle + \left\langle \Delta r_{\perp}^2 \right\rangle$$

Biophys. J. 66 (3), 601-614, (1994)

Translational Diffusion Coefficient above the MT surface

0.000

0.400

Translational Diffusion Coefficient and its normal and tangential components:

H-bond Breaking and Reorientation; Jump:

Science, **311** (5762), 832-835, (2006).

Rotational Diffusion:

$$\nabla_{\vec{r}}^{2} f(\theta, \phi, t) = \frac{1}{D_{rot}} \frac{\partial f(\theta, \phi, t)}{\partial t}$$

$$f = \sum_{l} P_{l}(\theta) a_{l}(t), \qquad \tau_{reor}^{l} = \frac{1}{D_{rot} l(l+1)}$$

$$\Gamma_{l}(t) = \left\langle P_{l}(\hat{\mu}(t) \cdot \hat{\mu}(0)) \right\rangle$$
Theory of electric polarization, Elsevier, (1973).

Rotational Diffusion Coefficient, Water Dipole Orientation:

Dipole-Dipole Autocorrelation:

	R 4	R6	R14
А	0.74	0.54	0.25
В	0.15	0.26	0.39
С	0.1	0.2	0.35
$\tau_1(ps)$	2791	1378	634
$\tau_2(ps)$	0.3	1.8	~0.0
$\tau_3(ps)$	24.5	40.7	23.3
$\overline{ au}(ps)$	2095	761	170

	R 4	R6	R14		
А	0.48	0.32	0.13		
В	0.37	0.46	0.4		
С	0.13	0.21	0.45		
$\tau_1(ps)$	1855	985	522		
$\tau_2(ps)$	0.17	0.35	~0.0		
$\tau_3(ps)$	22	19.8	5.3		
$\overline{\tau}(ps)$	910	324	75		

Survival Time Correlation:

$$C_{R}(t) = \sum_{j=1}^{N} \frac{1}{T-t} \sum_{t'=0}^{T-t} P_{R,j}(t,t+t';t^{*})$$

J. Phys. Chem., 87 (25), 5071–5083, (1983).

Water Survival probability:

<i>t</i> (ps))
---------------	---

	Α	В	$ au_1(ps)$	$ au_2(ps)$	$\overline{ au}(ps)$
R 4	0.53	0.46	705	18.7	386
R 6	0.6	0.4	827	29	511
R 14	0.77	0.22	1382	42	1076

Ions Survival probability:

	R 3	R 6	R 14
Α	0.98	0.93	0.95
В	0.01	0.04	0.03
$ au_1(ps)$	3262	3952	4003
$ au_2(ps)$	27	31	28
$\overline{\tau}(ps)$	3215	3709	3833

	R 4	R 8.5	R 14
Α	0.5	0.78	0.81
В	0.34	0.16	0.14
$ au_1(ps)$	2108	901	1380
$ au_2(ps)$	55.5	31	37
$\overline{ au}(ps)$	1071	700	1134

Electric Conductivity:

$$\sigma = \frac{1}{3k_B T V} \int_0^\infty \left\langle \mathbf{J}(t) \cdot \mathbf{J}(0) \right\rangle dt$$
$$\mathbf{J}(t) = e \left(\sum_{i_{cat}=1}^{N_{cat}} z_{cat} \mathbf{v}_{i_{cat}}(t) + \sum_{i_{an}=1}^{N_{an}} z_{an} \mathbf{v}_{i_{an}}(t) \right)$$

Nernst-Einstein

$$\sigma = \frac{e^2}{k_B T V} \left(N_{cat} D_{cat} + N_{an} D_{an} \right)$$

Electric Conductivity of MT:

	Conduct. (S/m)	D _{Na} (2)	D _{cl} (2)	
Within 3	0.06	0Â93∌s ^{−1}	\mathring{A} ps^{-1}	
All	0.76	0.072	0.16	
All not within 3	0.68	0.10	0.16	
All not within 5	0.42	0.11	0.17	

Biophys. J., 90 (10), 3739-48 (2006)

Counterion Condensation; Poisson-Boltzmann:

$$\nabla^{2}\psi(\mathbf{r}) = -4\pi \frac{\rho}{\varepsilon}; \quad \rho = z_{-}n_{-} + z_{+}n_{+}, \qquad n_{\pm} = n_{\pm}^{0}e^{-\frac{z_{\pm}\psi}{k_{B}T}}$$
$$\nabla^{2}\psi(\mathbf{r}) = \frac{8\pi e n^{0}}{\varepsilon_{W}}Sinh\left(\frac{e\psi(\mathbf{r})}{k_{B}T}\right) \qquad \lambda_{D} = \sqrt{\frac{8\pi e^{2}n^{0}}{\varepsilon_{W}k_{B}T}}$$
$$\frac{d\psi}{dz}\Big|_{z=boundary} = -\frac{4\pi}{\varepsilon_{W}}\sigma; \qquad \psi\Big|_{\infty} = 0$$

Intermolecular and Surface Forces, Academic Press, (2011).

Concentration of Counterion and Coion:

Biological Implication:

Kinesin and Tubulin contact residue map:

α	LYS	ARG	HIS	VAL	GLY	GLU	GLY	GLU	GLU	SER	GLU	GLU
	401	402	406	409	410	411	412	414	415	419	420	423
Η	GLU	ARG	THR	LYS	LYS	LYS	LEU	LYS	ARG	ARG	ARG	LYS
	287	350	276	273	266	266	265	261	350	346	346	48

β	GLU	ARG	MET	THR	GLU
	196	264	416	419	420
Н	ARG	ASP	HIS	PRO	ARG
	307	308	171	172	307

Residues within 4 Å distance on Kinesin head and α - β tubulin dimer.

Dynein and Tubulin contact residue map:

α	ARG	VAL	GLY	GLY	MET	GLU	GLU	GLY	GLU
	402	409	410	412	413	414	415	416	420
Η	GLU	PRO	ASN	PRO	PRO	ARG	ALA	ARG	ARG
	45	53	51	53	53	123	124	123	123

β	ASP	GLU	PRO	GLU	ASP	GLU	GLN
	163	196	263	420	427	431	434
Η	LYS	ARG	SER	GLU	LYS	GLN	GLN
	75	47	48	84	40	41	41

Residues within 4 Å distance on Dynein head and α - β tubulin dimer.

Conformation, counterions and distance (from MT) of the C-terminal tail

Possible scenarios for C-terminals interaction:

Sodium: yellow, Calcium: magenta, Magnesium: Cyan, and Chloride: Green

Release and Adsorb of Sodium Ion :

Thank you